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Vehicle Sharing Networks

Features 
• On-demand: customers reserve a vehicle when they 

want

• One-way: rent from one location and return the 

vehicle to any other location in the service network

• Examples: bikes, scooters, cars, and emerging 

applications of autonomous vehicles
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Multifaceted Benefits 
• Increased flexibility and competitive costs for customers

• Sustainability benefits

• May reduce overall vehicle ownerships and produce 

less carbon emissions

• Help to promote adoption of electric vehicles equipped 

with cleaner energy

Source: Generated by Midjourney
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Emerging Platforms
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Source: gigcarshare.com


GIG Car Share (launched in 2017) is a carsharing service in 
the San Francisco Bay Area, Sacramento, and Seattle, 
created by the AAA.  
The company operates a fleet of Toyota Prius Hybrid 
vehicles and all-electric Chevrolet Bolts.

Source: evo.ca

Evo Car Share (launched in 2015) is a carsharing service in 
Greater Vancouver and Victoria, created by the BCAA.  
The company offers exclusively Toyota Prius Hybrid 
vehicles.

http://gigcarshare.com
http://evo.ca
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Emerging But No Success?
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Competitive Prices

Last-Mile Trips

On July 25, GIG Car Share announces 
shut-down by end of 2024…

Great for Commute

Reduce Car Ownerships

Yet, GIG states that…
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Operational Challenges
Numerous operational challenges of vehicle sharing 
networks

• Service region design

• Fleet sizing / staffing

• Trip pricing (fixed / dynamic / subscription)

• Infrastructure planning, e.g., battery / charging station


……


Focus of this talk: Inventory Repositioning 

Why repositioning? 
• Lost demand due to lack of vehicles in high 

utilization zone

• Low utilization zone with oversupply of vehicles
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Screenshot of GIG Car Share App

Anecdotal example of low utilization: 
oversupply of vehicles near brewery
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Matching Supply with Demand in Network
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Location i

Location j

Location k

Demand di

Demand dj

Demand dkInventory xk

Inventory xi

Inventory xj

Illustration of 3 locations in a -location service regionn
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Vehicle Repositioning from the Lens of Inventory Control
Network Inventory Dynamics as Markov Decision Process 

At period 


I) Service provider reviews the current inventory level   (State), where  belongs to 

 (State Space)


II) Service provider makes a decision on the target repositioning inventory level    (Policy)


 


III) Rental trips by customers are realized, and inventory level moves to a new level 


         

t = 1,2,…

xt xt

Δn−1 = {(z1, …, zn) |∑i zi = 1, zi ≥ 0}

yt

xt+1
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xt = (xt,1, …, xt,n) yt = (yt,1, …, yt,n)
policy π

 Origin-to-destination matrix 
for vehicles returning  Pt

 Censored demand  min(dt, yt)

            (State Transition)xt+1 = (yt − dt)+ + PT min(yt, dt)
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Objective

Single-period cost of policy  

    Total cost   =    Repositioning cost   +  Lost sales cost 

π

Cπ
t Mt(yπ

t − xπ
t ) Lt(yπ

t )
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Lt = ∑
i

∑
j

lij ⋅ Pij(dt,i − yπ
t,i)

+
Mt(yπ

t − xπ
t ) = min

n

∑
i=1

n

∑
j=1

cij ⋅ ξij

s.t.
n

∑
i=1

ξij −
n

∑
k=1

ξjk = yπ
t,j − xπ

t,j

ξij ≥ 0

Long-run average cost of policy  

                         

π

λπ = lim
T→∞

1
T

T

∑
t=1

𝔼[Cπ
t ]

Given target repositioning level, 
complete repositioning by solving 

minimum cost flow
Censored demand realized and lost 

sales cost incurred
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Designing Repositioning Policy
Optimal Policy (that minimizes long run average cost) 

                                                     

• Optimal policy is intractable and computationally challenging in general even when the 
demand distribution is known or fully observed


Base-Stock Repositioning Policy 
• Repositioning to base-stock level  regardless of the current state 


min
π

1
T

T

∑
t=1

𝔼[Cπ
t ] , T → ∞

S = (S1, …, Sn) xt

9
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Base-Stock Repositioning Policy
Several Advantages 

• Easy to interpret and implement in practice


• State-independent policy


• Rich literature in classic inventory control 


What about the performances of Base-Stock Repositioning Policy? 

Best Base-Stock Repositioning Policy 

                                         S⋆ ∈ arg min
S∈Δn−1

lim sup
T→∞

1
T

T

∑
t=1

𝔼S[Ct]

10
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Asymptotic Optimality I
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Theorem (Asymptotic Optimality I, informal) 
The ratio of the best base-stock repositioning policy’s costs against that of the optimal 
policy converges to 1 when the lost sales cost becomes large compared to repositioning 
cost. More specifically, the ratio 





which approaches  as  approaches infinity.

Long run average cost of best base-stock repositioning policy
Long run average cost of optimal repositioning policy

= 1 + Θ (Γ−1),

1 Γ := ∑i,j lij /∑i,j cij

Remark 
• Practical relevance 

- Large : Priority in minimizing user dissatisfication and need for market growth

- Small : Repositioning can be done in bulk and thus relatively cost-effective


• Analogous asymptotic optimality result in single-product single-location inventory 
control when the ratio of the lost sales cost and the holding cost goes to infinity

lij
cij
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Asymptotic Optimality II
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Theorem (Asymptotic Optimality II, informal) 
The ratio of the best base-stock repositioning policy’s costs against that of the optimal 
policy converges to 1 when the number of locations  becomes large. More specifically,





which approaches  as  approaches infinity.


n
Long run average cost of best base-stock repositioning policy

Long run average cost of optimal repositioning policy
= 1 + Θ (n− 1

2 ),

1 n

Remark 
• Intuition: Lost sales cost incurred individually at each location — the opposite of “risk 

pooling”

• Operational value: Achieve asymptotic optimality in this analytically-challenging 

regime with large n
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Learning Best Base-Stock Policy on the Fly
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Challenges of Learning While Repositioning 

• Demand distribution is unknown and censored demand is observed

• Randomness in both demand arriving and vehicle returning

• Network contains multiple locations and limited (fixed) supply

Performance Metric 
The regret is the difference in costs incurred by algorithm  compared with that of the 
base-stock repositioning policy with optimal base-stock level 


                                        

A
S⋆

Regret(A, T) =
T

∑
t=1

𝔼[CA
t ] −

T

∑
t=1

𝔼[CS⋆

t ]
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Learning While Repositioning Problem
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Base Stock 
Level S1

Base Stock 
Level S2

Base Stock 
Level S3

…… Base Stock 
Level ?

Single-period cost *

 CS1

1

Single-period cost

CS2

2

Which level to experiment with next?

Single-period cost

CS3

3

* With only censored demand, lost sales costs in single-period costs are not observable, but we can circumvent this by 
defining modified costs  that is observable and does not affect regret value C̃t = Ct − ∑

i,j

lijPt,ijdt,i

…… ?
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First Attempt
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Lipschitz Bandits-based Repositioning (LipBR) Algorithm

A Natural Bandit Learning Perspective 

• Treat each base-stock repositioning policy as an arm

• The reward of each arm is negative long-run average cost

• View negative single-period cost as a noisy observation of reward

Policy space

|CS CS′ |
S

S′ 

− ≤ L∥S − S′ ∥
Choose the next policy as the arm 
guided by Lipschitz bandits 
framework 

Policy
Policy

Key Idea 



Hansheng Jiang (University of Toronto)

Regret Analysis of LipBR
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Lipschitz Bandits-based Repositioning (LipBR) Algorithm
1. Establish Lipschitz property of the long-run average cost wrt policy


2. Discretize the policy space  by covering, and bound the covering number by 

 for accuracy 


3. Concentration inequalities of single period costs versus long-run average costs


4. Regret 

Δn−1

O(ϵ1−n) ϵ

≈ KT + Kϵ, where K = O(ϵ1−n) and ϵ = O(T−1/(n+1))
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LipBR: Regret with Critical Dependence on n

17

Can we bypass the curse of dimensionality and 
remove the power dependence on ?n

Theorem (Regret of LipBR, informal) 
The regret of the LipBR algorithm against the best base-stock policy is upper bounded by 

 .
Õ(T n
n + 1)

Remark 
• Pros: LipBR is based on a very natural idea of bridging bandits and MDP. It works 

under the most general network and cost structure

• Cons: The regret has a critical dependence on the number of locations . When  is 

large, the regret guarantee is almost linear
n n
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Inherent Complexity of Learning While Repositioning 
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Proposition (A Negative Example) 
There exists a set of two-dimensional joint distribution   such that for any 

, the censored distribution of 
 is the same for all  .


𝒫
(x0, y0) ∈ {(x0, y0) : x0 + y0 = 1,x0, y0 ≥ 0}
(min(X, x0), min(Y, y0)) (X, Y) ∈ 𝒫

Remark 
Learning joint demand distributions with multi-dimensional censored demand 
data but a limited supply is inherently impossible. 

To reduce regret, we need to introduce additional conditions and employ 
the problem structure…… 

But, what kind of condition/structure?
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Offline problem solves for  with uncensored demandS⋆

Let’s Restart with the Offline Problem
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min
S

1
t

t

∑
s=1

Cs(xs, S, ds, Ps)

s.t. xs+1 = (S−ds)+ + PT
s min(S, ds), for all s = 1,…, t − 1

S ∈ Δn−1

Even the offline problem with uncensored demand is not trivial! 
• The decision variable  is continuous -dimensional


• The offline problem is non-convex in  because of 

S ∈ Δn−1 n
S ()+, min
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Solving the Offline Problem
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Two Reformulations Tackling NonConvexity
MILP Reformulation LP Reformulation 

• Introduce binary auxiliary variables 
to express nonconvex piecewise 
linear functions originated from 
demand censoring


•  constraints

•  decision variables

O(n2t + nt2)
O(n2t)

Generalization Bound of Offline Solution 

• We prove the offline solution enjoys a tight generalization bound  
with probability at least .

O( log T / t)
1 − T−2

• Under a mild cost condition*



•  The resulting LP contains  
constraints and  decision 
variables, and can be solved efficiently 

∑n
i=1 ljiPt,ji ≥

n
∑
i=1

Pt,jicij

O(nt)
O(n + t)

* This cost condition holds easily in practice and aligns well with one regime that base-stock policy is optimal. Similar 
conditions have been used in the literature as well.
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Two Algorithms Based on Offline Solution
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Dynamic Learning Algorithm 
1. Employ doubling epoch scheme so that new policy can dominate the regret rate

2. At beginning of each epoch, solve the offline problem and apply the updated 

policy in the whole epoch

If demand is uncensored…

One Time Learning Algorithm 
1. Explore for  time periods by placing sufficient inventory in  locations 

respectively to construct  effective uncensored network demand

2. Solve the offline problem using constructed data

3. Exploit the policy learned from the offline problem in remaining periods

nT2/3 n
T2/3

If demand is censored but network independence holds…
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Regret Analysis of Dynamic Learning and One-Time Learning

• By proving a tight generalization bound of offline solution, we can derive the following 
regret guarantees
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Theorem (Regret of One-Time Learning, informal) 
Under network independence assumption, the one-time learning algorithm can 
achieve  regret.
Õ(T 2

3)

Theorem (Regret of Dynamic Learning, informal) 
Under the oracle of uncensored demand data, the dynamic learning algorithm 
can achieve  regret.
Õ(T 1

2)

Remark 
• Learning while repositioning is easy in the oracle of uncensored demand

• The one-time learning algorithm requires  periods to collect data location by 

location and thus incurs a suboptimal regret compared to the oracle
O(T2/3)
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Comparison of Two Algorithms
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Dynamic Learning Algorithm 

Requires uncensored demand

One-Time Learning Algorithm 

Requires network independence

Compute offline solution again 
each time with new uncensored 
data

Compute offline solution once

Oracle of uncensored demand Network independence allows pure 
exploration to collect uncensored data

Data Access

Policy 
Update

Regret Õ(T 1
2) Õ(T 2

3)

Assumption
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Going Beyond Offline Solution
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Can we design an algorithm that achieves regret guarantee of  
without both uncensored demand and network independence?

O(T 1
2)

Yes!
(Under the same mild cost condition used in LP reformulation)
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Online Gradient Repositioning (OGR)
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Theorem (Regret of OGR, informal) 
Our Online Gradient Repositioning (OGR) algorithm achieves a regret of  and this 
rate even holds for adversarial data. 


This rate matches the theoretical lower bound.

O(T 1
2)
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Algorithm Design of OGR
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Framework: Projected Gradient Descent

St

St − gt

Policy space

St+1

Key Challenges Addressed 
•How to define the gradient, with only censored demand?

•How to disentangle intertemporal dependence in regret analysis?

−gt
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Algorithm Design of OGR
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At iteration 
1. Compute the dual optimal solution  to the constraints  in a small 

linear program 
2.   is a sub-gradient 

3. Gradient descent 

4. Project  onto  to obtain 

t
λt,i wt,i ≤ min{dt,i, Si}

gt,i = λi1{min{dt,i,St,i}=St,i}

S̃t = St − 1

t
gt

S̃t Δn−1 St+1
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Significant Advantages of OGR
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Best of Many Worlds 
• Minimal Data Requirement 
• Utilizing only censored demand data


• Computational Efficiency 
• In each period, only computes one small linear program with  constraints and 

variables, which does not scale up with time horizon 

• Reliability 
• Regret guarantee for both i.i.d. and non-i.i.d. (adversarial) demands and transition 

probabilities

O(n2)
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Numerical Illustration
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Under 
network 
independence

Without 
network 
independence
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Summary
Efficient inventory monitoring is critical for successful operations of vehicle sharing systems

We establish asymptotic optimality of base-stock repositioning policy and prove near 
optimal regret bound of learning

Learning and optimizing in high dimension with censored data is particularly challenging

Takeaway 
For practitioners, our analysis indicates that it is generally challenging to match supply and 
demand in a vehicle sharing network, especially given that the supply is constrained
 
Our results urge more powerful data analytic tools to reduce operational costs and improve 
system efficiency in vehicle sharing

30
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Thanks for your attention!
Contact: hansheng.jiang@utoronto.ca
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Supplementary slides
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Details of LP Reformulation
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Suppose   the offline problem can be reformulated into LP
n

∑
i=1

lijPs,ij ≥
n

∑
i=1

Ps,ijcji

min
t

∑
s=1

n

∑
i=1

n

∑
j=1

cijξs,ij −
t

∑
s=1

n

∑
i=1

n

∑
j=1

lijPs,ijws,i

subject to
n

∑
i=1

ξs,ij −
n

∑
k=1

ξs,jk = ws,j −
n

∑
i=1

Ps,ijws,i, for all j = 1,…, n and s = 1,…, t,

ξs,ij ≥ 0, ∀i = 1,…, n, for all i, j = 1,…, n and s = 1,…, t,
n

∑
i=1

Si = 1, {Si}n
i=1 ∈ [0,1]n,

ws,i ≤ min{ds,i, Si}, ws,i ≥ 0, for all s = 1,.…, t, i = 1,…, n .
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Details of MILP Reformulation
min

t

∑
s=1

n

∑
i=1

n

∑
j=1

cijξs,ij −
t

∑
s=1

n

∑
i=1

n

∑
j=1

lijPs,ijms,i +
t

∑
s=1

n

∑
i=1

n

∑
j=1

lijPs,ijds,i

subject to
n

∑
i=1

ξs,ij −
n

∑
k=1

ξs,jk = ms,j −
n

∑
i=1

Ps,ijms,i,  for all j = 1,…, n ands = 1,…, t,

ξs,ij ≥ 0,∀i = 1,…, n,  for all j = 1,…, n and s = 1,…, t,
n

∑
i=1

Si = 1,S = {Si}n
i=1 ∈ [0,1]n,

(m1,i, m2,i, …, mt,i)T = ΓT
i (m̃1,i, m̃2,i, …, m̃t,i)T for all i = 1,..,n,

Γi(d1,i, d2,i, …, dt,i)T = (d̃1,i, d̃2,i, …, d̃t,i)T for all i = 1,..,n,
t

∑
s=1

zs+1,i ⋅ d̃s,i ≤ Si ≤
t

∑
s=1

zs,i ⋅ d̃s,i + zt+1,i,  for all i = 1,…, n,

−2(1 − zs′ ,i) ≤ m̃s,i − Si ≤ 2(1 − zs′ ,i), for all 1 ≤ s′ ≤ s ≤ t and i = 1,..,n,

−2(1 − zs′ ,i) ≤ m̃s,i − d̃s,i ≤ 2(1 − zs′ ,i), for all 1 ≤ s < s′ ≤ t + 1 and i = 1,..,n,
t+1

∑
s=1

zs,i = 1, for all i = 1,…, n,

zs = {zs,i}n
i=1 ∈ {0,1}n,  for all s = 1,…, t + 1.
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• Note:  is permutation matrixΓi
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Generalization Bound
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Theorem (Generalization Bound, informal) 

With probability at least , it holds for all  simultaneously that


                   


1 −
1
T2

S

sup
S∈Δn−1

1
t

t

∑
s=1

C̃S
s − 𝔼[C̃S

1] ≤ 6n3 (max
i,j

cij + max
i,j

lij) ⋅
log T

t
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OGR Algorithm Details
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Steps of Dynamic Learning and One-Time Algorithm
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Dynamic Learning Algorithm 
1. Employ doubling epoch scheme so that new policy can dominate the regret rate

2. At beginning of each epoch, solve the offline problem and apply the updated 

policy in the whole epoch

If demand is uncensored…

One Time Learning Algorithm 
1. Explore for  time periods by placing sufficient inventory in  locations 

respectively to construct  effective uncensored network demand

2. Solve the offline problem using constructed data

3. Exploit the policy learned from the offline problem in remaining periods

nT2/3 n
T2/3

If demand is censored but network independence holds…


