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Vehicle Sharing Networks

Features

* On-demand: customers reserve a vehicle when they
want

* One-way: rent from one location and return the
vehicle to any other location in the service network

 Examples: bikes, scooters, cars, and emerging
applications of autonomous vehicles
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Multifaceted Benetfits

* Increased flexibility and competitive costs for customers
» Sustainability benefits

* May reduce overall vehicle ownerships and produce
IeSS CarbOn emiSSionS Source: Generated by Midjourney

* Help to promote adoption of electric vehicles equipped
with cleaner energy
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Emerging Platforms

Let’s roll.

Sign up instantly.
Get the app.

Get a car.

Hybrid Gig 2.0
91%, ~409 miles

Get going.

ioS ‘ ! ANDROID

Source: gigcarshare.com

GIG Car Share (launched in 2017) is a carsharing service in
the San Francisco Bay Area, Sacramento, and Seattle,

created by the AAA.

The company operates a fleet of Toyota Prius Hybrid
vehicles and all-electric Chevrolet Bolts.

Find a car

E Unlock your ride

° o Finish your trip
Qp

Source: evo.ca

Evo Car Share (launched in 2015) is a carsharing service in
Greater Vancouver and Victoria, created by the BCAA.

The company offers exclusively Toyota Prius Hybrid
vehicles.


http://gigcarshare.com
http://evo.ca

Emerging But No Success?

huge bummer @ @ &), gig cars are such a convenient option for one-way trips.

On July 25, GIG Car Share announces

| don't know what their numbers are like, but it sounds like a good amount of their usage
hut-down by end of 2024... | '
shut dO y was people commuting to and from work.

& 228 DReply £ Award /2 Share Great for Commute

It was much cheaper than ride share for most medium length trips, sad to see it go

{F 242 & D Reply /Q\ Award 2> Share - . These are grea.ut for last mile jcrlp.s In Oakland/Berkeley where public transit is bad or the I?|ke
I Compet|t|ve Prices infrastructure isn't great (which is many places). Hopefully someone else takes up the niche
in the market.
wait what???? this was so helpful to me i don’t wanna go back to paying for lyfts everywhere Last-Mile Trips
& 1M JdL (I Reply £ Award 4 Share

4 47 {5 ([JReply £ Award & Share

This really sucks. As a non car owner and, with ride shares being crazy expensive in this city,
this was my real only quick, cheap-ish option to get from A to B. With this, Car2Go, and
ReachNow all bailing you have to wonder if we'll see another car share company pop up.

156 { [JReply £ Award > share = Reduce Car Ownerships

Really disappointed to get this news -- these cars have been a lifesaver for me over the past
couple of years. Wonder what they are going to do with all those Priuses.

4> 100 b (J Reply  £Q Award & Share

Yet, GIG states that...

Despite our best efforts, there have been challenges — primarily
around decreased demand, rising operational costs, and
changes to consumer commuting patterns.
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Operational Challenges

Numerous operational challenges of vehicle sharing
networks

* Service region design

* Fleet sizing / staffing

* Trip pricing (fixed / dynamic / subscription)

* Infrastructure planning, e.g., battery / charging station

Focus of this talk: Inventory Repositioning

Why repositioning?

* Lost demand due to lack of vehicles in high
utilization zone

* Low utilization zone with oversupply of vehicles
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Matching Supply with Demand in Network
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Vehicle Repositioning from the Lens of Inventory Control

Network Inventory Dynamics as Markov Decision Process

At period f = 1,2,...

) Service provider reviews the current inventory level X, (State), where X, belongs to

A, ={@,..»z)| 2. z= 1,z 2 0} (State Space)

1) Service provider makes a decision on the target repositioning inventory level y, (Policy)

X, = (xt,l, ...,xm)

policy @

>

yt — (yt,la °°°9yt,n)

1l) Rental trips by customers are realized, and inventory level moves to a new level x,. ,

X =, —d)"+

PT

min(y % dt)

Origin-to-destination matrix

for vehicles returning P,

(State Transition)

Censored demand min(d,, y,)

Hansheng Jiang (University of Toronto)
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Objective

Single-period cost of policy x

Total cost C = Repositioning cost M (y,” —x/") + Lost sales cost L(y;")

Given target repositioning level, /

complete repositioning by solving
minimum cost flow

i sales cost incurred
M(yi" — x; )_mmzz Cyj " S

i=1 j=1 L, = Zzlzj°Plj(dt,i_yZi)+
n n l J
st. ) &= ) &=y —x"
=1 k=1

éijZO

Censored demand realized and lost

Long-run average cost of policy «

1 T
A" = Iim — -[CF
T—>00Tt_1 [ t]
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Designing Repositioning Policy

Optimal Policy (that minimizes long run average cost)

1 T
min — -(CF], T — oo
ﬂ TZ‘ [C7]

* Optimal policy is intractable and computationally challenging in general even when the
demand distribution is known or fully observed

Base-Stock Repositioning Policy

» Repositioning to base-stock level § = (S, ..., ) regardless of the current state x,

Hansheng Jiang (University of Toronto) 9



Base-Stock Repositioning Policy

Several Advantages

* Easy to interpret and implement in practice
e State-independent policy

* Rich literature in classic inventory control

What about the performances of Base-Stock Repositioning Policy?

Best Base-Stock Repositioning Policy

1
S* € are min lim sup — S1C
g pTZ, C]

SEAn—l T—00
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Asymptotic Optimality |

Theorem (Asymptotic Optimality I, informal)

The ratio of the best base-stock repositioning policy’s costs against that of the optimal
policy converges to 1 when the lost sales cost becomes large compared to repositioning
cost. More specifically, the ratio

Long run average cost of best base-stock repositioning policy

=1+0 ('),
Long run average cost of optimal repositioning policy

which approaches 1 as I" := Zijlij/ Zijcl-j approaches infinity.

Remark

* Practical relevance
- Large ll-j: Priority in minimizing user dissatisfication and need for market growth
- Small Cjj: Repositioning can be done in bulk and thus relatively cost-effective

* Analogous asymptotic optimality result in single-product single-location inventory
control when the ratio of the lost sales cost and the holding cost goes to infinity



Asymptotic Optimality

Theorem (Asymptotic Optimality I, informal)
The ratio of the best base-stock repositioning policy’s costs against that of the optimal
policy converges to 1 when the number of locations n becomes large. More specifically,

Long run average cost of best base-stock repositioning policy L e ( 1 )
— n 2 .

Long run average cost of optimal repositioning policy

which approaches 1 as n approaches infinity.

Remark

* Intuition: Lost sales cost incurred individually at each location — the opposite of “risk
pooling”

* Operational value: Achieve asymptotic optimality in this analytically-challenging
regime with large n



Learning Best Base-Stock Policy on the Fly

Performance Metric

The regret is the difference in costs incurred by algorithm A compared with that of the
base-stock repositioning policy with optimal base-stock level $ *

T T
Regret(A,T) = Z “[CA] - Z ‘[Cts*]

=1 =1

Challenges of Learning While Repositioning

 Demand distribution is unknown and censored demand is observed
* Randomness in both demand arriving and vehicle returning
* Network contains multiple locations and limited (fixed) supply



Learning While Repositioning Problem

Base Stock Base Stock Base Stock Base Stock
Level S, Il> Level S, Il> Level S; 777 Level ?
Single-period cost * Single-period cost Single-period cost - 2
C> Cc CS:
1 2 3

Which level to experiment with next?

* With only censored demand, lost sales costs in single-period costs are not observable, but we can circumvent this by
defining modified costs C, = C, — Z ll-th,l-jdt,i that is observable and does not affect regret value

l,]
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First Attempt

A Natural Bandit Learning Perspective

* [reat each base-stock repositioning policy as an arm
* The reward of each arm is negative long-run average cost
* View negative single-period cost as a noisy observation of reward

Lipschitz Bandits-based Repositioning (LipBR) Algorithm

PO
Pol

| 5= CY| <L|IS=9

Key ldea

Choose the next policy as the arm
guided by Lipschitz bandits
framework

Policy space

Hansheng Jiang (University of Toronto) 15



Regret Analysis of LipBR

Lipschitz Bandits-based Repositioning (LipBR) Algorithm

1. Establish Lipschitz property of the long-run average cost wrt policy
2. Discretize the policy space A, _, by covering, and bound the covering number by
O(e'=") for accuracy €

3. Concentration inequalities of single period costs versus long-run average costs

4. Regret ~ /KT + Ke, where K = 0(61_”) and € = O(T_I/(HH))



LipBR: Regret with Critical Dependence on n

Theorem (Regret of LipBR, informal)
The regret of the LipBR algorithm against the best base-stock policy is upper bounded by

Remark

* Pros: LipBR is based on a very natural idea of bridging bandits and MDP. It works
under the most general network and cost structure

» Cons: The regret has a critical dependence on the number of locations n. When n is
large, the regret guarantee is almost linear

Can we bypass the curse of dimensionality and
remove the power dependence on n?

Hansheng Jiang (University of Toronto) 17



Inherent Complexity of Learning While Repositioning

Proposition (A Negative Example)

There exists a set of two-dimensional joint distribution & such that for any
(X0, Vo) € 1 (X0, Vo) = Xo + Yo = 1,x3,y9 = 0}, the censored distribution of
(min(X, Xp), min(Y, yo)) is the same for all (X,Y) € L.

Remark
Learning joint demand distributions with multi-dimensional censored demand
data but a limited supply is inherently impossible.

To reduce regret, we need to introduce additional conditions and employ
the problem structure......

But, what kind of condition/structure?



L et’s Restart with the Offline Problem

Offline problem solves for S* with uncensored demand
1 [
min — C(x,S,d, P,
st Z s o)

st. x_;=(S-d)" +PTm1n(S J,foralls=1,...,1—1
Se A

Even the oftline problem with uncensored demand is not trivial!

» The decision variable S € A, is continuous n-dimensional

e The offline problem is non-convex in S because of ()*, min

Hansheng Jiang (University of Toronto) 19



Solving the Oftline Problem

Two Reformulations Tackling NonConvexity

MILP Reformulation LP Reformulation
* Introduce binary auxiliary variables * Under a mild cost condition®
to express nonconvex piecewise
linear functions originated from Zz 1 lﬂP i 2> Z P, 1,jiCij

demand censorin
9 » The resulting LP contalns O(nt)

. 2 2 -
On 2t + nt”) constraints constraints and O(n + 1) decision
« O(n“t) decision variables variables, and can be solved efficiently

Generalization Bound of Offline Solution

» We prove the offline solution enjoys a tight generalization bound 0(\/ log T/\/;)
with probability at least 1 — 772

* This cost condition holds easily in practice and aligns well with one regime that base-stock policy is optimal. Similar
conditions have been used in the literature as well.

Hansheng Jiang (University of Toronto) 20



Two Algorithms Based on Oftline Solution

It demand is uncensored...

Dynamic Learning Algorithm
1. Employ doubling epoch scheme so that new policy can dominate the regret rate

2. At beginning of each epoch, solve the offline problem and apply the updated
policy in the whole epoch

It demand is censored but network independence holds...

One Time Learning Algorithm

1. Explore for nT??> time periods by placing sufficient inventory in n locations
respectively to construct T%?3 effective uncensored network demand

2. Solve the offline problem using constructed data
3. Exploit the policy learned from the offline problem in remaining periods

Hansheng Jiang (University of Toronto) 21



Regret Analysis of Dynamic Learning and One-Time Learning

* By proving a tight generalization bound of offline solution, we can derive the following
regret guarantees

Theorem (Regret of Dynamic Learning, informal)
Under the oracle of uncensored demand data, the dynamic learning algorithm

can achieve G(T%) regret.

Theorem (Regret of One-Time Learning, informal)
Under network independence assumption, the one-time learning algorithm can

achieve O(T%) regret.

Remark
* | earning while repositioning is easy in the oracle of uncensored demand

- The one-time learning algorithm requires O(T?°) periods to collect data location by
location and thus incurs a suboptimal regret compared to the oracle



Comparison of Two Algorithms

Dynamic Learning Algorithm

One-Time Learning Algorithm

Assumption  Requires uncensored demand

Data Access Oracle of uncensored demand

Policy Compute offline solution again
Update each time with new uncensored
data
~ 1
Regret O(T)

Requires network independence

Network independence allows pure
exploration to collect uncensored data

Compute offline solution once

O(T7)

Hansheng Jiang (University of Toronto) 23



Going Beyond Oftline Solution

|
Can we design an algorithm that achieves regret guarantee of O(77?2)
without both uncensored demand and network independence?

Yes!

(Under the same mild cost condition used in LP reformulation)

Hansheng Jiang (University of Toronto) 24



Online Gradient Repositioning (OGR)

Theorem (Regret of OGR, informal)

Our Online Gradient Repositioning (OGR) algorithm achieves a regret of O(T%) and this
rate even holds for adversarial data.

This rate matches the theoretical lower bound.

Hansheng Jiang (University of Toronto) 25



Algorithm Design of OGR

Framework: Projected Gradient Descent o> — &

Policy space

Key Challenges Addressed

* How to define the gradient, with only censored demand?
 How to disentangle intertemporal dependence in regret analysis?

Hansheng Jiang (University of Toronto)
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Algorithm Design of OGR

At Iiteration ¢

1. Compute the dual optimal solution 4, ; to the constraints w, ; < min{d,

»9;1 in asmall
linear program

2. gt,i — /lil{min{dt,iast,i}:‘gt,i} IS a SUb'gradient

3. Gradient descent gt =S, — Lgt
[

v

4. Project S, onto A, _, to obtain §,_ ,



Signiticant Advantages of OGR

Best of Many Worlds

* Minimal Data Requirement
 Utilizing only censored demand data
 Computational Efficiency

* |n each period, only computes one small linear program with O(nz) constraints and
variables, which does not scale up with time horizon

* Reliability

* Regret guarantee for both i.i.d. and non-i.i.d. (adversarial) demands and transition
probabilities

Hansheng Jiang (University of Toronto) 28



Numerical lllustration
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Summary

Efficient inventory monitoring is critical for successful operations of vehicle sharing systems

We establish asymptotic optimality of base-stock repositioning policy and prove near
optimal regret bound of learning

Learning and optimizing in high dimension with censored data is particularly challenging

Takeaway

For practitioners, our analysis indicates that it is generally challenging to match supply and
demand in a vehicle sharing network, especially given that the supply is constrained

Our results urge more powerful data analytic tools to reduce operational costs and improve
system efficiency in vehicle sharing
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Thanks for your attention!

Contact: hansheng.jiang@utoronto.ca
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Supplementary slides
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Details of LP Reformulation

Suppose Z llJ 5.ij 2 Z 5.iiC;i the offline problem can be reformulated into LP

min ZZZCU 5.,0j ZZZZZJPSZJWSZ

s=1 i=1 j=I s=1 i=1 j=I

subject to Z Cs.ij 2 Cs.jk = ZPSUWSI’ forall j=1,...,.nand s =1,...,¢

5s,ij209 ‘v’z—l ., 1, for alll]—l .nand s =1,...,1,
D S=1, (S}, €[0,11"
i=1

Wy < min{d, ., S}, Wy, >0, forall s=1,....;,i=1,...,n

Sl’ l



Details of MILP Reformulation
min Y 3 Y e - XY Y ipmit XY VP,

s=1 i=1 j=1 s=1 i=1 j=1 s=1 i=1 j=1
n n

subject to Z&Sij— Zcfsjk— Z s forallj=1,...,nands = 1,...,1,
=1 k=1

i 2 0,Vi=1,....n, for aII] =1,...,nands =1,..., 1,

n
S =18= (S}, €01,
=1
(ml,i, mz,i, s e mt Z)T — FT(ml 0 n’jlz,i, oo 09 mt,l)TfOI’ all i — 1,..,”,

~)

I’l-(dl,i, dz’l-, . dt l)T (dl i d2 iy ey dm-)Tfor alli = 1,..,n,

Z Zop1i i S5 < Z Zgjdg;+ 741 foralli=1,...,n

s=1 s=1

—2(1 —zg) <mg;—§5; <21 —zy,foralll <s'<s<tandi=1,.,n

—2(1 — zy;) < mg; —d i <21 =z ), foralll <s<s'<r+landi=1,.,n

1

Zzsi= I,foralli=1,...,n
s=1

z, = {7,;}7— €10,1}", foralls =1,...,1+ 1.
 Note: I'; is permutation matrix



Generalization Bound

Theorem (Generalization Bound, informal)

1

With probability at least 1 — P= it holds for all S simultaneously that
1 t ~S ~S 3
sup | — Z C; —E[C}]| <6n” | max ¢;; + max lij -
SEAn—l [ s—1 l’] la]

log T

Vi



OGR Algorithm Details

Algorithm 1 0OGR: Online Gradient Repositioning Algorithm

1: Input: Number of iterations 7', initial repositioning policy vy ;

2: fort=1,....,7 do

3: Set the target inventory be y, and observe realized censored demand d;, = min(y,,d;);
4 Denote At = (Ai1,...,Aen) ' be the optimal dual solution corresponding to constraints (29)
5t (wt—}—la Yy dt7 Pt) = min Z Z Cz’jft,qjj — Z Z lith,ijwt,i (28)
i=1 j=1 i=1 j=1

subject to th,zj — th,jk =Wy, — Z Piiw,, forall j=1,...,n,
i=1 k=1 i=1
Wt ; ZO, gt,ij ZO, for all Z,] — 1,...,’n,,

we; < (dy);, foralli=1,... n, (29)

where & = {&:; 11 -1, Wt = {w;};—, are decision variables;

5: Compute the gradient g, = (gi.1,---,Gs.n) ', Where g;; = Ay - ]l{(d;fh:yt At foralli=1,...,n;
6: Update the repositioning policy y,. ; =1Ia _, (yt — \/izg);
7: end for

8: OQutput: {yt};r:l.
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Steps of Dynamic Learning and One-Time Algorithm

It demand is uncensored...

Dynamic Learning Algorithm
1. Employ doubling epoch scheme so that new policy can dominate the regret rate

2. At beginning of each epoch, solve the offline problem and apply the updated
policy in the whole epoch

It demand is censored but network independence holds...

One Time Learning Algorithm

1. Explore for nT??> time periods by placing sufficient inventory in n locations
respectively to construct T%?3 effective uncensored network demand

2. Solve the offline problem using constructed data
3. Exploit the policy learned from the offline problem in remaining periods

Hansheng Jiang (University of Toronto) 37



