Designing Surprise Bags for Surplus Foods

- Hansheng Jiang (University of Toronto)
- Joint work with Fan Zhou (UMich \rightarrow CUHK-SZ), Andrea Li (Industry/TGTG), Joline Uichanco (UMich)

February 2025

Over 1 billion tonnes of food are wasted each year globally

- Over 1 billion tonnes of food are wasted each year globally
 - Contributing to 10% of total human caused greenhouse gas emissions

- Over 1 billion tonnes of food are wasted each year globally
 - Contributing to 10% of total human caused greenhouse gas emissions
 - \circ Climate impact is four times the total emissions from the aviation sector imple

- Over 1 billion tonnes of food are wasted each year globally
 - Contributing to 10% of total human caused greenhouse gas emissions
 - \circ Climate impact is four times the total emissions from the aviation sector 🏹
- Around 40% of food wastes come from restaurants, grocery stores, food service companies

- Over 1 billion tonnes of food are wasted each year globally
 - Contributing to 10% of total human caused greenhouse gas emissions
 - \circ Climate impact is four times the total emissions from the aviation sector 🏹
- Around 40% of food wastes come from restaurants, grocery stores, food service companies

- Over 1 billion tonnes of food are wasted each year globally
 - Contributing to 10% of total human caused greenhouse gas emissions
 - \circ Climate impact is four times the total emissions from the aviation sector 🏹
- Around 40% of food wastes come from restaurants, grocery stores, food service companies

Source: rednote

potentially **mitigating** it

potentially **mitigating** it

Stores

potentially **mitigating** it

Stores

potentially **mitigating** it

Trash

potentially **mitigating** it

Trash

potentially mitigating it

Trash

potentially **mitigating** it

Trash

potentially **mitigating** it

surplus foods with individual customers

Grocery stores and restaurants play a pivotal role in both generating food waste and

Emerging platforms across the world to combat food waste at stores by connecting

potentially **mitigating** it

- surplus foods with individual customers
 - Too Good To Go in Europe, North America, Australia

Grocery stores and restaurants play a pivotal role in both generating food waste and

Emerging platforms across the world to combat food waste at stores by connecting

potentially **mitigating** it

- surplus foods with individual customers
 - Too Good To Go in Europe, North America, Australia
 - Treasure in Singapore

Grocery stores and restaurants play a pivotal role in both generating food waste and

Emerging platforms across the world to combat food waste at stores by connecting

potentially **mitigating** it

- surplus foods with individual customers
 - Too Good To Go in Europe, North America, Australia
 - Treasure in Singapore
 - Tabete in Japan

Grocery stores and restaurants play a pivotal role in both generating food waste and

Emerging platforms across the world to combat food waste at stores by connecting

potentially **mitigating** it

- surplus foods with individual customers
 - Too Good To Go in Europe, North America, Australia
 - Treasure in Singapore
 - Tabete in Japan
 - 。惜食魔法袋, 趣小袋 in China

Grocery stores and restaurants play a pivotal role in both generating food waste and

Emerging platforms across the world to combat food waste at stores by connecting

B2C marketplace for surplus food

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

19 Countries

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

Partnering with both small independent eateries and major chains including Starbucks, Tim

+175k +350M **Partner Stores**

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

Partnering with both small independent eateries and major chains including Starbucks, Tim

+175k +350M Partner Stores

+2B Lbs of Co2e Avoided

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

19	+100M	+35
Countries	Registered Users	Meals

TGTG's innovative business model is win-win-win

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

Partnering with both small independent eateries and major chains including Starbucks, Tim

+175k OM Partner Stores Saved

Hansheng Jiang (University of Toronto) 4

+2B

Lbs of Co2e Avoided

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

19	+100M	+35
Countries	Registered Users	Meals

TGTG's innovative business model is win-win-win

Partner Stores

Retrieve food costs and gain marketing values

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

Partnering with both small independent eateries and major chains including Starbucks, Tim

+175k **SOM** Partner Stores Saved

Hansheng Jiang (University of Toronto) 4

+2B

Lbs of Co2e Avoided

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

19	+100M	+35
Countries	Registered Users	Meals

TGTG's innovative business model is win-win-win

Partner Stores

Retrieve food costs and gain marketing values

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

Partnering with both small independent eateries and major chains including Starbucks, Tim

+175k **SOM** Partner Stores Saved

+2B Lbs of Co2e Avoided

Environmental

Reduce food waste

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

19	+100M	+35
Countries	Registered Users	Meals

TGTG's innovative business model is win-win-win

Partner Stores

Retrieve food costs and gain marketing values

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

Partnering with both small independent eateries and major chains including Starbucks, Tim

+175k **SOM Partner Stores** Saved

+2B Lbs of Co2e Avoided

Environmental

Reduce food waste

Customer

- B2C marketplace for surplus food
 - Hortons, 7-Eleven, Circle K, Peet's Coffee, Blue Bottles, Whole Foods, Metro

19	+100M	+35
Countries	Registered Users	Meals

TGTG's innovative business model is win-win-win

Launched in 2015 in Denmark, Too Good To Go (TGTG) is now the world's largest

Partnering with both small independent eateries and major chains including Starbucks, Tim

+175k **SOM** Partner Stores Saved

Hansheng Jiang (University of Toronto) 4

+2B

Lbs of Co2e Avoided

Surprise Bags

Viral social media influence

Source: Tiktok

Surprise Bags

Viral social media influence

Source: Tiktok

Too Good To Go

"

Users purchase Surprise Bags filled with a mix of surplus food items.

We know that food waste varies on a dayto-day basis, so this is our way of making sure retailers have the flexibility to sell genuine surplus - whatever that ends up being.

Surprise Bags are sold at a reduced price of the contents' original retail value, typically priced at approximately 25 to 50% of the original retail value.

Participating businesses list surprise bags of surplus foods

Workflow

price

Customers reserve bags at highly discounted

Workflow

price

Customers reserve bags at highly discounted

Customers self pick up during designated time slots

Workflow

price

Workflow

price

Key Features of the Platform

Workflow

price

Key Features of the Platform

• Customer Self-Pickup: Customers pick up surprise bags directly from stores, minimizing logistics for the retailer

Participating businesses list surprise bags of surplus foods

price

Key Features of the Platform

- Customer Self-Pickup: Customers pick up surprise bags directly from stores, minimizing logistics for the retailer
- Information Design: A single rating system is used to maintain the surprise element for customers

Participating businesses list surprise bags of surplus foods

price

Key Features of the Platform

- Customer Self-Pickup: Customers pick up surprise bags directly from stores, minimizing logistics for the retailer
- Information Design: A single rating system is used to maintain the surprise element for customers
- **Commission-Based Fee:** The platform charges a commission for each bag sold

Non-stationary demand

Non-stationary demand

 Sales are driven by customer ratings, which are influenced by the uncertain quantity and quality of surplus food

Non-stationary demand

- Sales are driven by customer ratings, which are influenced by the uncertain quantity and quality of surplus food
- Unpredictability

Non-stationary demand

 Sales are driven by customer ratings, which are influenced by the uncertain quantity and quality of surplus food

Unpredictability

 Amount of surplus foods are unknown until the point of sale, making it difficult to predict customer satisfaction

Non-stationary demand

 Sales are driven by customer ratings, which are influenced by the uncertain quantity and quality of surplus food

Unpredictability

 Amount of surplus foods are unknown until the point of sale, making it difficult to predict customer satisfaction

Decision under uncertain supply

Non-stationary demand

 Sales are driven by customer ratings, which are influenced by the uncertain quantity and quality of surplus food

Unpredictability

 Amount of surplus foods are unknown until the point of sale, making it difficult to predict customer satisfaction

Decision under uncertain supply

 Stores must list available surprise bags 24 hours in advance without knowing the exact surplus quantity or value

Non-stationary demand

 Sales are driven by customer ratings, which are influenced by the uncertain quantity and quality of surplus food

Unpredictability

 Amount of surplus foods are unknown until the point of sale, making it difficult to predict customer satisfaction

Decision under uncertain supply

 Stores must list available surprise bags 24 hours in advance without knowing the exact surplus quantity or value

Allocate content across surprise bags

Non-stationary demand

 Sales are driven by customer ratings, which are influenced by the uncertain quantity and quality of surplus food

Unpredictability

 Amount of surplus foods are unknown until the point of sale, making it difficult to predict customer satisfaction

Decision under uncertain supply

• Stores must list available surprise bags 24 hours in advance without knowing the exact surplus quantity or value

Allocate content across surprise bags

 The common approach is to evenly distribute surplus items across all bags, ensuring a similar monetary value. However, this may not always maximize consumer satisfaction

• Backfires of existing heuristic approaches

- Backfires of existing heuristic approaches
 - Cancel reservation ex post \rightarrow Consumer complaints and penalty by platforms

- Backfires of existing heuristic approaches
 - Cancel reservation ex post \rightarrow Consumer complaints and penalty by platforms
 - additional labor costs

 $^{\circ}$ Supplement the surplus with regular items from standard sales \rightarrow High opportunity costs and

- Backfires of existing heuristic approaches
 - \circ Cancel reservation *ex post* \rightarrow Consumer complaints and penalty by platforms
 - $^{\circ}$ Supplement the surplus with regular items from standard sales \rightarrow High opportunity costs and additional labor costs

From Store View to Platform view

- Backfires of existing heuristic approaches
 - \circ Cancel reservation *ex post* \rightarrow Consumer complaints and penalty by platforms
 - $^{\circ}$ Supplement the surplus with regular items from standard sales \rightarrow High opportunity costs and additional labor costs

From Store View to Platform view

Revenue from Surprise Bags Provides stores with salvage value for unsold surplus, essential for the long-term viability of the TGTG platform.

- Backfires of existing heuristic approaches
 - \circ Cancel reservation ex post \rightarrow Consumer complaints and penalty by platforms
 - $^{\circ}$ Supplement the surplus with regular items from standard sales \rightarrow High opportunity costs and additional labor costs

From Store View to Platform view

Revenue from Surprise Bags TGTG platform.

Platform's Role

inventory and surprise bag design

Provides stores with salvage value for unsold surplus, essential for the long-term viability of the

TGTG is developing recommendation systems to help stores strategically manage surplus

- Backfires of existing heuristic approaches
 - \circ Cancel reservation *ex post* \rightarrow Consumer complaints and penalty by platforms
 - $^{\circ}$ Supplement the surplus with regular items from standard sales \rightarrow High opportunity costs and additional labor costs

From Store View to Platform view

Revenue from Surprise Bags TGTG platform.

Platform's Role

inventory and surprise bag design

Balancing Trade-offs

Recommendations need to balance store earnings and consumer satisfaction

Provides stores with salvage value for unsold surplus, essential for the long-term viability of the

- TGTG is developing recommendation systems to help stores strategically manage surplus

- Backfires of existing heuristic approaches
 - \circ Cancel reservation *ex post* \rightarrow Consumer complaints and penalty by platforms
 - $^{\circ}$ Supplement the surplus with regular items from standard sales \rightarrow High opportunity costs and additional labor costs

From Store View to Platform view

Revenue from Surprise Bags TGTG platform.

Platform's Role

inventory and surprise bag design

Balancing Trade-offs

Recommendations need to balance store earnings and consumer satisfaction

Provides stores with salvage value for unsold surplus, essential for the long-term viability of the

- TGTG is developing recommendation systems to help stores strategically manage surplus

Research Question

Research Question

How many surprise bags should be offered?

Research Question

How many surprise bags should be offered? How much total food should be included in the bags?

Research Question

How many surprise How much total food sh How should the food be

- How many surprise bags should be offered?
- How much total food should be included in the bags?
- How should the food be allocated across each bag?

Research Question

- How many surprise bags should be offered?
- How much total food should be included in the bags?
- How should the food be allocated across each bag?

Our Research Contribution Supports the development of these systems by exploring optimal bag design strategies that ensure long-term profitability and satisfaction

Literature Review

• Key drivers of food waste in the supply chain

Key drivers of food waste in the supply chain

Cosmetic standards: designated channels for selling "ugly" foods

Key drivers of food waste in the supply chain

- Cosmetic standards: designated channels for selling "ugly" foods
- Expiration date: perishable inventory control, product display strategies, markdown pricing and promotion, technology-driven innovation to increase traceability (blockchain, AI)

Key drivers of food waste in the supply chain

- Cosmetic standards: designated channels for selling "ugly" foods
- promotion, technology-driven innovation to increase traceability (blockchain, AI)

Traditional channels of surplus foods

Expiration date: perishable inventory control, product display strategies, markdown pricing and

Key drivers of food waste in the supply chain

- Cosmetic standards: designated channels for selling "ugly" foods
- Expiration date: perishable inventory control, product display strategies, markdown pricing and promotion, technology-driven innovation to increase traceability (blockchain, AI)

Traditional channels of surplus foods

 Donation to food bank requires scale of similar products and involved volunteers with decentralized efforts, which do not scale well

Key drivers of food waste in the supply chain

- Cosmetic standards: designated channels for selling "ugly" foods
- Expiration date: perishable inventory control, product display strategies, markdown pricing and promotion, technology-driven innovation to increase traceability (blockchain, AI)

Traditional channels of surplus foods

- Donation to food bank requires scale of similar products and involved volunteers with decentralized efforts, which do not scale well
- Innovative surplus food management as of TGTG (New and quickly growing!)

Key drivers of food waste in the supply chain

- Cosmetic standards: designated channels for selling "ugly" foods
- Expiration date: perishable inventory control, product display strategies, markdown pricing and promotion, technology-driven innovation to increase traceability (blockchain, AI)

Traditional channels of surplus foods

 Donation to food bank requires scale of similar products and involved volunteers with decentralized efforts, which do not scale well

Innovative surplus food management as of TGTG (New and quickly growing!)

 Focus on clearance: Yang and Yu (2024) show how surplus food sales reduce waste and boost profits, but may lead to increased consumer-side waste

Key drivers of food waste in the supply chain

- Cosmetic standards: designated channels for selling "ugly" foods
- Expiration date: perishable inventory control, product display strategies, markdown pricing and promotion, technology-driven innovation to increase traceability (blockchain, AI)

Traditional channels of surplus foods

 Donation to food bank requires scale of similar products and involved volunteers with decentralized efforts, which do not scale well

Innovative surplus food management as of TGTG (New and quickly growing!)

- Focus on clearance: Yang and Yu (2024) show how surplus food sales reduce waste and boost profits, but may lead to increased consumer-side waste
- Our difference: We explore store reputation and the trade-offs between short-term profits and long-term reputation building in the context of TGTG

Opaque selling

Opaque selling

Opaque selling

 Research on opaque selling (where consumers cannot fully observe) product attributes) contributes to understanding consumer behavior in surprise bag sales

Opaque selling

- Research on opaque selling (where consumers cannot fully observe) product attributes) contributes to understanding consumer behavior in surprise bag sales
- Reputation management

Opaque selling

 Research on opaque selling (where consumers cannot fully observe) product attributes) contributes to understanding consumer behavior in surprise bag sales

Reputation management

• Reputation is central in our model, as customer satisfaction influences future demand. Previous research examines the role of ratings and pricing in shaping reputation

Opaque selling

 Research on opaque selling (where consumers cannot fully observe) product attributes) contributes to understanding consumer behavior in surprise bag sales

Reputation management

• Reputation is central in our model, as customer satisfaction influences future demand. Previous research examines the role of ratings and pricing in shaping reputation

Opaque selling

 Research on opaque selling (where consumers cannot fully observe) product attributes) contributes to understanding consumer behavior in surprise bag sales

Reputation management

• Reputation is central in our model, as customer satisfaction influences future demand. Previous research examines the role of ratings and pricing in shaping reputation

Opaque selling

 Research on opaque selling (where consumers cannot fully observe) product attributes) contributes to understanding consumer behavior in surprise bag sales

Reputation management

- Reputation is central in our model, as customer satisfaction influences future demand. Previous research examines the role of ratings and pricing in shaping reputation
- Positioning of our work

Opaque selling

 Research on opaque selling (where consumers cannot fully observe) product attributes) contributes to understanding consumer behavior in surprise bag sales

Reputation management

• Reputation is central in our model, as customer satisfaction influences future demand. Previous research examines the role of ratings and pricing in shaping reputation

Positioning of our work

 Our paper is one of the first to examine opaque selling to reduce food waste, and the first to explore the optimal dynamic design of probabilistic goods in this context.

• Bag value *x*

• Bag value *x*

• Combines quantity, freshness, cosmetic quality, etc.

• Bag value *x*

• Combines quantity, freshness, cosmetic quality, etc.

• Consumer utility v(x)

- Bag value \boldsymbol{X}
 - Combines quantity, freshness, cosmetic quality, etc.
- Consumer utility v(x)
 - Non-linear function (anchored to posted price and paid price)

- Bag value \boldsymbol{X}
 - Combines quantity, freshness, cosmetic quality, etc.
- Consumer utility v(x)
 - Non-linear function (anchored to posted price and paid price)

 \circ Example: Prospect theory (gains/losses asymmetry) \rightarrow Higher utility for perceived "bargains"

- Bag value \boldsymbol{X}
 - Combines quantity, freshness, cosmetic quality, etc.
- Consumer utility v(x)
 - Non-linear function (anchored to posted price and paid price)
 - \circ Example: Prospect theory (gains/losses asymmetry) \rightarrow Higher utility for perceived "bargains"
 - $\circ v(x)$ is non-decreasing, differentiable, bounded slope

- Bag value \boldsymbol{X}
 - Combines quantity, freshness, cosmetic quality, etc.
- Consumer utility v(x)
 - Non-linear function (anchored to posted price and paid price)
 - \circ Example: Prospect theory (gains/losses asymmetry) \rightarrow Higher utility for perceived "bargains"
 - $\circ v(x)$ is non-decreasing, differentiable, bounded slope
- Allocation distribution $\phi_t(\cdot)$

- Bag value *X*
 - Combines quantity, freshness, cosmetic quality, etc.
- Consumer utility v(x)
 - Non-linear function (anchored to posted price and paid price)
 - \circ Example: Prospect theory (gains/losses asymmetry) \rightarrow Higher utility for perceived "bargains"
 - $\circ v(x)$ is non-decreasing, differentiable, bounded slope
- Allocation distribution $\phi_t(\cdot)$
 - $\phi_t(x)$ stands for the proportion (density) of bags with value x

- Bag value *X*
 - Combines quantity, freshness, cosmetic quality, etc.
- Consumer utility v(x)
 - Non-linear function (anchored to posted price and paid price)
 - \circ Example: Prospect theory (gains/losses asymmetry) \rightarrow Higher utility for perceived "bargains"
 - $\circ v(x)$ is non-decreasing, differentiable, bounded slope
- Allocation distribution $\phi_t(\cdot)$
 - $\phi_t(x)$ stands for the proportion (density) of bags with value x
- Population average utility $V[\phi_t(\cdot)]$

- Bag value \boldsymbol{X}
 - Combines quantity, freshness, cosmetic quality, etc.
- Consumer utility v(x)
 - Non-linear function (anchored to posted price and paid price)
 - \circ Example: Prospect theory (gains/losses asymmetry) \rightarrow Higher utility for perceived "bargains"
 - $\circ v(x)$ is non-decreasing, differentiable, bounded slope
- Allocation distribution $\phi_t(\cdot)$
 - $\phi_t(x)$ stands for the proportion (density) of bags with value x
- Population average utility $V[\phi_t(\cdot)]$

 $V[\phi_t(\cdot)]$:

$$:= \int_0^\infty v(x)\phi_t(x)\mathrm{d}x$$

• Reputation r_t

• Reputation r_t

Reflects past customer satisfaction

• Reputation r_t

Reflects past customer satisfaction

• Reputation r_t

Reflects past customer satisfaction

- Reputation r_t
 - Reflects past customer satisfaction
- Reputation update rule

>

• Reputation r_t

Reflects past customer satisfaction

• Reputation update rule

$$r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - t)$$

 $(-\delta)r_t$

>
• Reputation r_t

Reflects past customer satisfaction

• Reputation update rule

$$r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - t)$$

 $(-\delta)r_t$

• Reputation r_t

Reflects past customer satisfaction

• Reputation update rule

$$r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - t)$$

• Demand $D(r_t)$

 $(-\delta)r_t$

• Reputation r_{t}

Reflects past customer satisfaction

Reputation update rule

$$r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - t)$$

• Demand $D(r_t)$

Demand is concave, increasing in reputation (diminishing returns)

 $(-\delta)r_t$

• Reputation r_{t}

Reflects past customer satisfaction

Reputation update rule

$$r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - t)$$

• Demand $D(r_t)$

Demand is concave, increasing in reputation (diminishing returns)

 $(-\delta)r_t$

• Reputation r_{t}

Reflects past customer satisfaction

Reputation update rule

$$r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - t)$$

• Demand $D(r_t)$

Demand is concave, increasing in reputation (diminishing returns)

• Number of reservation bags n_{t}

 $(-\delta)r_t$

• Reputation r_{t}

Reflects past customer satisfaction

Reputation update rule

$$r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - t)$$

• Demand $D(r_t)$

Demand is concave, increasing in reputation (diminishing returns)

• Number of reservation bags n_{t}

$(-\delta)r_t$

Hansheng Jiang (University of Toronto) 13

• Reputation r_{t}

Reflects past customer satisfaction

Reputation update rule

$$r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - t)$$

• Demand $D(r_t)$

Demand is concave, increasing in reputation (diminishing returns)

• Number of reservation bags n_{t}

$(-\delta)r_t$

Hansheng Jiang (University of Toronto) 13

• Reputation r_{t}

Reflects past customer satisfaction

Reputation update rule

$$r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - t)$$

• Demand $D(r_t)$

Demand is concave, increasing in reputation (diminishing returns)

• Number of reservation bags n_t

• Assumed $n_t \leq D(r_t)$

$(-\delta)r_t$

Hansheng Jiang (University of Toronto) 13

• Supplementary cost $C[\phi_t(\cdot), n_t, Q_t]$

• Supplementary cost $C[\phi_t(\cdot), n_t, Q_t]$

 $C[\phi(\cdot), n_t, Q_t] = c \cdot (n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x - Q_t)^+$

- Supplementary cost $C[\phi_t(\cdot), n_t, Q_t]$
- Store's payoff $R_t[(\phi_t(\cdot), n_t, Q_t])$

 $C[\phi(\cdot), n_t, Q_t] = c \cdot (n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x - Q_t)^+$

• Supplementary cost $C[\phi_t(\cdot), n_t, Q_t]$

• Store's payoff $R_t[(\phi_t(\cdot), n_t, Q_t])$

 $C[\phi(\cdot), n_t, Q_t] = c \cdot (n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x - Q_t)^+$

$R[\phi_t(\cdot), n_t, Q_t] = p \cdot n_t - C[\phi_t(\cdot), n_t, Q_t]$

- Supplementary cost $C[\phi_t(\cdot), n_t, Q_t]$
- Store's payoff $R_t[(\phi_t(\cdot), n_t, Q_t])$
- In-store waste W_{t}

 $C[\phi(\cdot), n_t, Q_t] = c \cdot (n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x - Q_t)^+$

$R[\phi_t(\cdot), n_t, Q_t] = p \cdot n_t - C[\phi_t(\cdot), n_t, Q_t]$

- Supplementary cost $C[\phi_t(\cdot), n_t, Q_t]$
 - $C[\phi(\,\cdot\,), n_t, Q_t] = c$
- Store's payoff $R_t[(\phi_t(\cdot), n_t, Q_t]]$ $R[\phi_t(\cdot), n_t, Q_t] =$
- In-store waste W_t

 $W_t = Q_t -$

$$\cdot (n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x - Q_t)^+$$

$$p \cdot n_t - C[\phi_t(\cdot), n_t, Q_t]$$

$$n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x$$

- Supplementary cost $C[\phi_t(\cdot), n_t, Q_t]$
 - $C[\phi(\,\cdot\,), n_t, Q_t] = c$
- Store's payoff $R_t[(\phi_t(\cdot), n_t, Q_t]]$ $R[\phi_t(\cdot), n_t, Q_t] =$
- In-store waste W_t

 $W_t = Q_t -$

• Household waste is not modelled, but also platform revenue maximization.

$$\cdot (n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x - Q_t)^+$$

$$p \cdot n_t - C[\phi_t(\cdot), n_t, Q_t]$$

$$n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x$$

Household waste is not modelled, but also align with distributing more surprise bags and thus

- Supplementary cost $C[\phi_t(\cdot), n_t, Q_t]$
 - $C[\phi(\,\cdot\,), n_t, Q_t] = c$
- Store's payoff $R_t[(\phi_t(\cdot), n_t, Q_t]]$ $R[\phi_t(\cdot), n_t, Q_t] =$
- In-store waste W_t

 $W_t = Q_t -$

• Household waste is not modelled, but also platform revenue maximization.

$$\cdot (n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x - Q_t)^+$$

$$p \cdot n_t - C[\phi_t(\cdot), n_t, Q_t]$$

$$n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x$$

Household waste is not modelled, but also align with distributing more surprise bags and thus

- Supplementary cost $C[\phi_t(\cdot), n_t, Q_t]$
 - $C[\phi(\,\cdot\,), n_t, Q_t] = c$
- Store's payoff $R_t[(\phi_t(\cdot), n_t, Q_t]]$ $R[\phi_t(\cdot), n_t, Q_t] =$
- In-store waste W_t

 $W_t = Q_t -$

• Household waste is not modelled, but also platform revenue maximization.

$$\cdot (n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x - Q_t)^+$$

$$p \cdot n_t - C[\phi_t(\cdot), n_t, Q_t]$$

$$n_t \cdot \int_0^\infty x \phi_t(x) \mathrm{d}x$$

Household waste is not modelled, but also align with distributing more surprise bags and thus

Sequence of events in period t

Payoff realized: $R[\phi_t(\cdot), n_t, Q_t]$

Seller designs food dist.: $\phi_t(x) : \mathbb{R}_+ \to \mathbb{R}_+$ $\begin{array}{c} \xrightarrow{} & \text{Time} \\ & \text{Reputation update} \\ & r_{t+1} = \delta V[\phi_t(\cdot)] + (1 - \delta)r_t \end{array}$

Stage II

Sequence of events in period t

random surplus Q_t

• Stage I: Upon observing the current reputation r_t , the store selects the number of bags to be distributed, n_t , which must satisfy $n_t \leq D(r_t)$, before the realization of

Sequence of events in period t

random surplus Q_t

• Stage I: Upon observing the current reputation r_t , the store selects the number of bags to be distributed, n_t , which must satisfy $n_t \leq D(r_t)$, before the realization of

Sequence of events in period t

random surplus Q_t

• Stage I: Upon observing the current reputation r_t , the store selects the number of bags to be distributed, n_t , which must satisfy $n_t \leq D(r_t)$, before the realization of

Sequence of events in period t

- random surplus Q_t
- (r_t, n_t, Q_t)

• Stage I: Upon observing the current reputation r_t , the store selects the number of bags to be distributed, n_t , which must satisfy $n_t \leq D(r_t)$, before the realization of

• Stage II: After observing the leftover food Q_t , the store determines the food value distribution across bags, represented by the function $\phi_t(\cdot): \mathbb{R}_+ \to \mathbb{R}_+$, based on

Sequence of events in period t

- random surplus Q_t
- (r_t, n_t, Q_t)

• Stage I: Upon observing the current reputation r_t , the store selects the number of bags to be distributed, n_t , which must satisfy $n_t \leq D(r_t)$, before the realization of

• Stage II: After observing the leftover food Q_t , the store determines the food value distribution across bags, represented by the function $\phi_t(\cdot)$: $\mathbb{R}_+ \to \mathbb{R}_+$, based on

Sequence of events in period t

- random surplus Q_t
- (r_t, n_t, Q_t)

• Stage I: Upon observing the current reputation r_t , the store selects the number of bags to be distributed, n_t , which must satisfy $n_t \leq D(r_t)$, before the realization of

• Stage II: After observing the leftover food Q_t , the store determines the food value distribution across bags, represented by the function $\phi_t(\cdot)$: $\mathbb{R}_+ \to \mathbb{R}_+$, based on

• An admissible stationary policy, denoted by π , consists of two decision stages

• An admissible stationary policy, denoted by π , consists of two decision stages \circ (i) $r \mapsto n^{\pi}$

- An admissible stationary policy, denoted by π , consists of two decision stages
 - \circ (i) $r \mapsto n^{\pi}$
 - (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

- An admissible stationary policy, denoted by π , consists of two decision stages
 - \circ (i) $r \mapsto n^{\pi}$
 - (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

- An admissible stationary policy, denoted by π , consists of two decision stages \circ (i) $r \mapsto n^{\pi}$
 - (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

 $\max_{\pi \in \Pi} \lim_{T \to \infty} \mathbb{E}_{Q_t \sim F} \left[\sum_{t=0}^T \beta^t R \left[\phi_t^{\pi}(\cdot), n_t^{\pi}, Q_t \right] \right]$ subject to $0 \le n_t^{\pi} \le D(r_t)$, $\int_{0}^{\infty} \phi_t^{\pi}(x) \mathrm{d}x = 1,$ $r_{t+1} = \delta V[\phi_t^{\pi}(\cdot)] + (1 - \delta)r_t.$

• An admissible stationary policy, denoted by π , consists of two decision stages

$$\circ$$
 (i) $r \mapsto n^{\pi}$

• (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

	тах <i>π</i> ∈П	$\lim_{T\to\infty}$	$\mathbb{E}_{Q_t \sim F}$
subject to $0 \le n_t^{\pi} \le L$			
		$\int_{0}^{\infty} \phi$	$b_t^{\pi}(x) \mathrm{d}x$
		$r_{t+1} =$	$= \delta V[q]$

$$\begin{bmatrix} T \\ \sum_{t=0}^{T} \beta^{t} R \left[\phi_{t}^{\pi}(\cdot), n_{t}^{\pi}, Q_{t} \right] \end{bmatrix}$$
 (Cumulative payer)
$$D(r_{t}),$$
$$x = 1,$$

 $\phi_t^{\pi}(\cdot)] + (1-\delta)r_t.$

- An admissible stationary policy, denoted by π , consists of two decision stages \circ (i) $r \mapsto n^{\pi}$
 - (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

 $\max_{\pi \in \Pi} \lim_{T \to \infty} \mathbb{E}_{Q_t \sim F} \left[\sum_{t=0}^T \beta^t R \left[\phi_t^{\pi}(\cdot), n_t^{\pi}, Q_t \right] \right]$ subject to $0 \le n_t^{\pi} \le D(r_t)$, $\int_{0}^{\infty} \phi_t^{\pi}(x) \mathrm{d}x = 1,$ $r_{t+1} = \delta V[\phi_t^{\pi}(\cdot)] + (1 - \delta)r_t.$

• An admissible stationary policy, denoted by π , consists of two decision stages \circ (i) $r \mapsto n^{\pi}$

• (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

 $\max_{\pi \in \Pi} \lim_{T \to \infty} \mathbb{E}_{Q_t \sim F}$ subject to $0 \le n_t^{\pi} \le D(r_t)$, $\int_0^\infty \phi_t^{\pi}(x) \mathrm{d}x = 1,$ $r_{t+1} = \delta V[\phi_t^{\pi}(\cdot)] + (1 - \delta)r_t.$

$$\left[\sum_{t=0}^{T} \beta^{t} R\left[\phi_{t}^{\pi}(\cdot), n_{t}^{\pi}, Q_{t}\right]\right]$$

(Upper bound reservation number)

- An admissible stationary policy, denoted by π , consists of two decision stages \circ (i) $r \mapsto n^{\pi}$
 - (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

 $\max_{\pi \in \Pi} \lim_{T \to \infty} \mathbb{E}_{Q_t \sim F} \left[\sum_{t=0}^T \beta^t R \left[\phi_t^{\pi}(\cdot), n_t^{\pi}, Q_t \right] \right]$ subject to $0 \le n_t^{\pi} \le D(r_t)$, $\int_{0}^{\infty} \phi_t^{\pi}(x) \mathrm{d}x = 1,$ $r_{t+1} = \delta V[\phi_t^{\pi}(\cdot)] + (1 - \delta)r_t.$

- An admissible stationary policy, denoted by π , consists of two decision stages \circ (i) $r \mapsto n^{\pi}$
 - (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

subject to $0 \le n_t^{\pi} \le D(r_t)$, $\oint_{t}^{\pi} (x) \mathrm{d}x = 1,$

 $\max_{\pi \in \Pi} \lim_{T \to \infty} \mathbb{E}_{Q_t \sim F} \left[\sum_{t=0}^T \beta^t R \left[\phi_t^{\pi}(\cdot), n_t^{\pi}, Q_t \right] \right]$

(Distribution normalization)

 $r_{t+1} = \delta V[\phi_t^{\pi}(\cdot)] + (1-\delta)r_t.$

- An admissible stationary policy, denoted by π , consists of two decision stages \circ (i) $r \mapsto n^{\pi}$
 - (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

 $\max_{\pi \in \Pi} \lim_{T \to \infty} \mathbb{E}_{Q_t \sim F} \left[\sum_{t=0}^T \beta^t R \left[\phi_t^{\pi}(\cdot), n_t^{\pi}, Q_t \right] \right]$ subject to $0 \le n_t^{\pi} \le D(r_t)$, $\int_{0}^{\infty} \phi_t^{\pi}(x) \mathrm{d}x = 1,$ $r_{t+1} = \delta V[\phi_t^{\pi}(\cdot)] + (1 - \delta)r_t.$

- An admissible stationary policy, denoted by π , consists of two decision stages \circ (i) $r \mapsto n^{\pi}$
 - (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

subject to $0 \le n_t^{\pi} \le D(r_t)$, $\int_{0}^{\infty} \phi_t^{\pi}(x) \mathrm{d}x = 1,$

 $\max_{\pi \in \Pi} \lim_{T \to \infty} \mathbb{E}_{Q_t \sim F} \left[\sum_{t=0}^T \beta^t R \left[\phi_t^{\pi}(\cdot), n_t^{\pi}, Q_t \right] \right]$

 $r_{t+1} = \delta V[\phi_t^{\pi}(\cdot)] + (1-\delta)r_t.$

(Reputation update)

Hansheng Jiang (University of Toronto) 16

- An admissible stationary policy, denoted by π , consists of two decision stages \circ (i) $r \mapsto n^{\pi}$
 - (ii) $(r, n, Q) \mapsto \phi^{\pi}(\cdot)$

 $\max_{\pi \in \Pi} \lim_{T \to \infty} \mathbb{E}_{Q_t \sim F} \left[\sum_{t=0}^T \beta^t R \left[\phi_t^{\pi}(\cdot), n_t^{\pi}, Q_t \right] \right]$ subject to $0 \le n_t^{\pi} \le D(r_t)$, $\int_{0}^{\infty} \phi_t^{\pi}(x) \mathrm{d}x = 1,$ $r_{t+1} = \delta V[\phi_t^{\pi}(\cdot)] + (1 - \delta)r_t.$

Hansheng Jiang (University of Toronto) 17

 $J^*(r) = \max_{n \le D(r)} \left| p \cdot n + \mathbb{E}_Q \left(\max_{\phi(\cdot)} \left[-C[\phi(\cdot), n, Q] + \beta J^* \left(\delta V[\phi(\cdot)] + (1 - \delta)r \right) \right] \right) \right|$

$$J^{*}(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_{Q} \left(\max_{\phi(\cdot)} \left[-C[\phi(\cdot)] \right] \right) \right] \right]$$

Proposition $J^*(r)$ is monotonically increasing in r.

 $\left[\phi(\cdot), n, Q\right] + \beta J^* \left(\delta V[\phi(\cdot)] + (1-\delta)r\right)\right]\right)$

$$J^*(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_Q \left(\max_{\phi(\cdot)} \left[-C[\phi(\cdot), n, Q] + \beta J^* \left(\delta V[\phi(\cdot)] + (1 - \delta)r \right) \right] \right) \right]$$

Proposition $J^*(r)$ is monotonically increasing in r.

 Implication: the store should choose a food distribution that maximizes customer satisfaction without increasing supplementary costs

$$J^*(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_Q \left(\max_{\phi(\cdot)} \left[-C[\phi(\cdot), n, Q] + \beta J^* \left(\delta V[\phi(\cdot)] + (1 - \delta)r \right) \right] \right) \right]$$

Proposition $J^*(r)$ is monotonically increasing in r.

 Implication: the store should choose a food distribution that maximizes customer satisfaction without increasing supplementary costs

$$J^{*}(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_{Q} \left(\max_{\phi(\cdot)} \left[-C[\phi(\cdot) \right] \right] \right] \right]$$

Proposition $J^*(r)$ is monotonically increasing in r.

 Implication: the store should choose a food distribution that maximizes customer satisfaction without increasing supplementary costs

 $[\phi(\cdot), n, Q] + \beta J^* \left(\delta V[\phi(\cdot)] + (1 - \delta)r \right) \right] \right)$

$$J^*(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_Q \left(\max_{\phi(\cdot)} \left[-C[\phi(\cdot), n, Q] + \beta J^* \left(\delta V[\phi(\cdot)] + (1 - \delta)r \right) \right] \right) \right]$$

Proposition $J^*(r)$ is monotonically increasing in r.

 Implication: the store should choose a food distribution that maximizes customer satisfaction without increasing supplementary costs

$$J^*(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_Q \left(\max_{\ell \ge 0} \left[-C(\ell, n, Q) + \beta J^* \left(\delta V[\phi^*(\cdot \mid \ell)] + (1 - \delta)r \right) \right] \right) \right] \checkmark$$

$$J^*(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_Q \left(\max_{\phi(\cdot)} \left[-C[\phi(\cdot), n, Q] + \beta J^* \left(\delta V[\phi(\cdot)] + (1 - \delta)r \right) \right] \right) \right]$$

Proposition $J^*(r)$ is monotonically increasing in r.

 Implication: the store should choose a food distribution that maximizes customer satisfaction without increasing supplementary costs

$$J^*(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_Q \left(\max_{\ell \ge 0} \left[-C(\ell, n, Q) + \beta J^* \left(\delta V[\phi^*(\cdot \mid \ell)] + (1 - \delta)r \right) \right] \right) \right] \checkmark$$

$$J^*(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_Q \left(\max_{\phi(\cdot)} \left[-C[\phi(\cdot), n, Q] + \beta J^* \left(\delta V[\phi(\cdot)] + (1 - \delta)r \right) \right] \right) \right]$$

Proposition $J^*(r)$ is monotonically increasing in r.

 Implication: the store should choose a food distribution that maximizes customer satisfaction without increasing supplementary costs

$$J^*(r) = \max_{n \le D(r)} \left[p \cdot n + \mathbb{E}_Q \left(\max_{\ell \ge 0} \left[-C(\ell, n, Q) + \beta J^* \left(\delta V[\phi^*(\cdot \mid \ell)] + (1 - \delta)r \right) \right] \right) \right]$$

Solving for $\phi^*(\cdot | \ell)$

Hansheng Jiang (University of Toronto) 18

Solving for $\phi^*(\cdot | \ell)$

• The conditional optimal food distribution $\phi^*(\cdot | \ell)$ is the optimal solution to

Solving for $\phi^*(\cdot | \ell)$

• The conditional optimal food distribution

$$\int_{0}^{\infty} \psi(x)\phi(x)dx$$

= 1, and $\int_{0}^{\infty} x\phi(x)dx = \ell$.

Solving for $\phi^*(\cdot | \ell)$

The conditional optimal food distribution $\phi^*(\cdot | \ell)$ is the optimal solution to

smallest concave function that is larger than v, by \hat{v} .

subject to $\int_{0}^{\infty} \phi(x) dx = 1$, and $\int_{0}^{\infty} x \phi(x) dx = \ell$.

Definition: denote the upper concave envelope of consumer utility function v, i.e., the

Solving for $\phi^*(\cdot | \ell)$

The conditional optimal food distribution $\phi^*(\cdot | \ell)$ is the optimal solution to

$$\max_{\phi(\cdot):\mathbb{R}_{+}\to\mathbb{R}_{+}} V[\phi(x)] = \int_{0}^{\infty} \phi(x) dx =$$
subject to
$$\int_{0}^{\infty} \phi(x) dx = \int_{0}^{\infty} \phi(x)$$

smallest concave function that is larger than v, by \hat{v} .

Proposition The optimal solution $\phi^*(\cdot | \ell)$ is supported by either one or two Dirac points and achieves a population's average utility at $V[\phi^*(\cdot | \ell)] = \hat{v}(\ell).$

 $\int_{0}^{\infty} v(x)\phi(x)dx$ x = 1, and $\int_{0}^{\infty} x\phi(x) dx = \ell$.

Definition: denote the upper concave envelope of consumer utility function v, i.e., the

Solving for $\phi^*(\cdot | \ell)$

The conditional optimal food distribution $\phi^*(\cdot | \ell)$ is the optimal solution to

$$\max_{\phi(\cdot):\mathbb{R}_{+}\to\mathbb{R}_{+}} V[\phi(x)] = \int_{0}^{\infty} \phi(x) dx$$
subject to
$$\int_{0}^{\infty} \phi(x) dx$$

smallest concave function that is larger than v, by \hat{v} .

Proposition The optimal solution $\phi^*(\cdot | \ell)$ is supported by either one or two Dirac points and achieves a population's average utility at $V[\phi^*(\cdot | \ell)] = \hat{v}(\ell).$

• When $v(\cdot)$ is concave, evenly distributing is optimal!

 $\int_{0}^{\infty} v(x)\phi(x)dx$ x = 1, and $\int_{0}^{\infty} x\phi(x) dx = \ell$.

Definition: denote the upper concave envelope of consumer utility function v, i.e., the

Hansheng Jiang (University of Toronto) 19

• Base utility function v_0

Hansheng Jiang (University of Toronto) 19

- Base utility function v_0

 $v_0(y) = y^{\alpha} \cdot \mathbf{1}_{y \ge 0} - \lambda(-y)^{\alpha} \cdot \mathbf{1}_{y < 0},$

- Base utility function v_0
- $v_0(y) = y^{\alpha} \cdot \mathbf{1}_v$
- $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion

$$y \ge 0 - \lambda (-y)^{\alpha} \cdot \mathbf{1}_{y < 0}$$

- Base utility function v_0
- $v_0(y) = y^{\alpha} \cdot \mathbf{1}_v$
- $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion
- Consumers' utility is influenced by two reference points

$$\lambda \geq 0 - \lambda (-y)^{\alpha} \cdot \mathbf{1}_{y < 0},$$

- Base utility function v_0
- $v_0(y) = y^{\alpha} \cdot \mathbf{1}_{v}$
- $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion
- Consumers' utility is influenced by two reference points

$$\lambda \geq 0 - \lambda (-y)^{\alpha} \cdot \mathbf{1}_{y < 0},$$

• Base utility function v_0

 $v_0(y) = y^{\alpha} \cdot \mathbf{1}_{v}$

• $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion

- Consumers' utility is influenced by two reference points
 - $^{\circ}$ The posted value of the surprise bag contents p_A

$$\lambda \geq 0 - \lambda (-y)^{\alpha} \cdot \mathbf{1}_{y < 0},$$

Ô	Baked Goods		\$1
	4.5 (80)		\$4.
U	Pick up: 10:00 PM - 10:45 PM	Today	
	-		

• Base utility function v_0

 $v_0(y) = y^{\alpha} \cdot \mathbf{1}_{v}$

• $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion

- Consumers' utility is influenced by two reference points
 - $^{\circ}$ The posted value of the surprise bag contents p_{A} .

$$\lambda_{y\geq 0} - \lambda(-y)^{\alpha} \cdot \mathbf{1}_{y<0},$$

• Base utility function v_0

 $v_0(y) = y^{\alpha} \cdot \mathbf{1}_v$

- $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion
- Consumers' utility is influenced by two reference points
 - $^{\circ}$ The posted value of the surprise bag contents p_{A} .
 - The price paid for the surprise bag p_R

$$\lambda_{y\geq 0} - \lambda(-y)^{\alpha} \cdot \mathbf{1}_{y<0},$$

• Base utility function v_0

 $v_0(y) = y^{\alpha} \cdot \mathbf{1}_{v}$

- $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion
- Consumers' utility is influenced by two reference points
 - $^{\circ}$ The posted value of the surprise bag contents p_{A} .
 - \circ The price paid for the surprise bag p_R

$$\lambda_{y\geq 0} - \lambda(-y)^{\alpha} \cdot \mathbf{1}_{y<0},$$

• Base utility function v_0

 $v_0(y) = y^{\alpha} \cdot \mathbf{1}_v$

• $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion

- Consumers' utility is influenced by two reference points
 - $^{\circ}$ The posted value of the surprise bag contents p_{A} .
 - \circ The price paid for the surprise bag p_R
- Total utility

$$\lambda_{y\geq 0} - \lambda(-y)^{\alpha} \cdot \mathbf{1}_{y<0},$$

• Base utility function v_0

 $v_0(y) = y^{\alpha} \cdot \mathbf{1}_{v}$

 $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion

- Consumers' utility is influenced by two reference points
 - $^{\circ}$ The posted value of the surprise bag contents p_{A} .
 - $^{\circ}$ The price paid for the surprise bag p_{R}
- Total utility

 $v(x) = (1 - \phi)v_0$

$$y \ge 0 - \lambda (-y)^{\alpha} \cdot \mathbf{1}_{y < 0},$$

$$(x - p_A) + \phi v_0 (x - p_B)$$

Hansheng Jiang (University of Toronto) 19

• Base utility function v_0

 $v_0(y) = y^{\alpha} \cdot \mathbf{1}_{v}$

 $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion

- Consumers' utility is influenced by two reference points
 - $^{\circ}$ The posted value of the surprise bag contents p_{A} .
 - $^{\circ}$ The price paid for the surprise bag p_{R}
- Total utility

 $v(x) = (1 - \phi)v_0$

 $\circ v_0(x - p_A)$ captures the reference effects from posted value p_A

$$y \ge 0 - \lambda (-y)^{\alpha} \cdot \mathbf{1}_{y < 0},$$

$$(x - p_A) + \phi v_0 (x - p_B)$$

• Base utility function v_0

 $v_0(y) = y^{\alpha} \cdot \mathbf{1}_{v}$

- $\alpha \in (0,1)$ captures diminishing sensitivity, $\lambda > 1$ captures loss aversion
- Consumers' utility is influenced by two reference points
 - $^{\circ}$ The posted value of the surprise bag contents p_{A} .
 - $^{\circ}$ The price paid for the surprise bag p_{R}
- Total utility

 $v(x) = (1 - \phi)v_0$

 $\circ v_0(x - p_A)$ captures the reference effects from posted value p_A $\circ v_0(x - p_B)$ captures the reference effects from price paid p_B

$$y \ge 0 - \lambda (-y)^{\alpha} \cdot \mathbf{1}_{y < 0},$$

$$(x - p_A) + \phi v_0 (x - p_B)$$

Distribution with Non-Concave Utility Function

• When $v(\cdot)$ is non-concave, (at most) two types of bags are needed!

Distribution with Non-Concave Utility Function

• When $v(\cdot)$ is non-concave, (at most) two types of bags are needed!

Note. $\hat{v}(x) = v(x)$ for $x \in \{\underline{x}\} \cup [x_1, x_2] \cup [x_3, \overline{x}]$, and $\hat{v}(x) > v(x)$ for $x \in (\underline{x}, x_1) \cup (x_2, x_3)$. Note that $x_1 > p_B$ and $x_3 > p_A$.

- Consumer utility function v(x) and its upper concave envelope $\hat{v}(x)$

Lookahead Approximation

• Optimize over finite K horizons

• Optimize over finite *K* horizons

$$\begin{split} V^*_t(r) &= \max_{n \leq D(r)} \quad p \cdot n + \mathbb{E}_Q \left[\max_{\ell \geq 0} \{ -C(\ell, 0) \} \right] \\ V^*_0(r) &= 0. \end{split}$$

$(n, Q) + \beta V_{t-1}^* (\delta \hat{v}(\ell) + (1 - \delta)r) \}$ $(1 \le t \le K),$

• Optimize over finite *K* horizons

$$\begin{split} V^*_t(r) &= \max_{n \leq D(r)} \quad p \cdot n + \mathbb{E}_Q \left[\max_{\ell \geq 0} \{ -C(\ell, 0) \} \right] \\ V^*_0(r) &= 0. \end{split}$$

$(n, Q) + \beta V_{t-1}^* (\delta \hat{v}(\ell) + (1 - \delta)r) \}$ $(1 \le t \le K),$

• Optimize over finite *K* horizons

$$V_t^*(r) = \max_{n \le D(r)} \quad p \cdot n + \mathbb{E}_Q \left[\max_{\ell \ge 0} \{ -C(\ell, N_0) \} \right]$$
$$V_0^*(r) = 0.$$

• Let $\tilde{\pi}^{(K)} = \{ \tilde{n}^{(K)}, \tilde{\ell}^{(K)} \}$ denote the *K*-LA policy

$(n, Q) + \beta V_{t-1}^* (\delta \hat{v}(\ell) + (1 - \delta)r) \}$ $(1 \le t \le K),$

• Optimize over finite K horizons

$$V_t^*(r) = \max_{n \le D(r)} \quad p \cdot n + \mathbb{E}_Q \left[\max_{\ell \ge 0} \{ -C(\ell, N_0) \} \right]$$
$$V_0^*(r) = 0.$$

• Let $\tilde{\pi}^{(K)} = \{ \tilde{n}^{(K)}, \tilde{\ell}^{(K)} \}$ denote the *K*-LA policy

Proposition Under the 1-LA policy (i.e., myopic policy), the optimal bag number is $\tilde{n}^{(1)}(r) = D(r)$ and the optimal bag value is $\tilde{\ell}^{(1)}(r, Q) = \min\{\bar{x}, Q/D(r)\}$.

$(n, Q) + \beta V_{t-1}^* (\delta \hat{v}(\ell) + (1 - \delta)r)\}$ $(1 \le t \le K),$

Performance Bound of Lookahead Approximation

Performance Bound of Lookahead Approximation

Proposition The revenue gap between the optimal policy and the K-LA policy is bounded by $J^*(r) - \tilde{J}^{(K)}(r) \le \frac{\beta^K p \kappa \delta \zeta}{(1 - (1 - \delta)\beta)(1 - \beta^K)}$.

Performance Bound of Lookahead Approximation

Proposition The revenue gap between the optimal policy and the K-LA policy is bounded by $J^*(r) - \tilde{J}^{(K)}(r) \leq ----$

- **Remark:** the performance bound is tighter when:
 - \circ Time discount factor β is small
 - $^{\circ}$ Weight on new consumers' utility in reputation updating δ is small
 - $^{\circ}$ Number of lookahead periods K is more
 - ° Maximal sensitivity of demand in response to reputation ζ is low
 - $^{\circ}$ Maximal sensitivity of consumers' utility to food value κ is small

 $β^{K} p \kappa \delta \zeta$

$$(1 - (1 - \delta)\beta)(1 - \beta^K)$$

• Deterministic fluid approximation policy π_D

- Deterministic fluid approximation policy π_D
- Replaces random $Q \sim F$ with expectation $\overline{Q} = \mathbb{E}_F[Q]$

Bellman equation is

$$J^{\pi_D}(r) = \max_{\substack{n \le D(r), \ell \ge 0}} pn - C$$

 π_D on $\bar{Q} = \mathbb{E}_F[Q]$

$C(\ell, n, \bar{Q}) + \beta J^{\pi_D} \left[\delta \hat{v}(\ell) + (1 - \delta)r \right]$

- Deterministic fluid approximation policy π_D
- Replaces random $Q \sim F$ with expectation $\bar{Q} = \mathbb{E}_F[Q]$ • Bellman equation is

$$J^{\pi_D}(r) = \max_{\substack{n \le D(r), \ell \ge 0}} pn - C$$

Convex relaxation of single-period payoff (McCormick envelope)

 π_D on $\bar{Q} = \mathbb{E}_F[Q]$

$C(\ell, n, \bar{Q}) + \beta J^{\pi_D} \left[\delta \hat{v}(\ell) + (1 - \delta)r \right]$

- Deterministic fluid approximation policy π_D
- Replaces random $Q \sim F$ with expectation $\overline{Q} = \mathbb{E}_F[Q]$ Bellman equation is

$$J^{\pi_D}(r) = \max_{\substack{n \le D(r), \ell \ge 0}} pn - C(\ell, n, \overline{Q}) + \beta J^{\pi_D} \left[\delta \hat{v}(\ell) + (1 - \delta)r \right]$$

Convex relaxation of single-period payoff (McCormick envelope)

Bellman equation is

 $C(n, \ell, Q) = c(n\ell - Q)^+ \ge c \left[\psi(n, \ell) - Q \right]^+ := \underline{C}(n, \ell, Q)$

- Deterministic fluid approximation policy
- Replaces random $Q \sim F$ with expectation Bellman equation is

$$J^{\pi_D}(r) = \max_{\substack{n \le D(r), \ell \ge 0}} pn - C(\ell, n, \overline{Q}) + \beta J^{\pi_D} \left[\delta \hat{v}(\ell) + (1 - \delta)r\right]$$

Convex relaxation of single-period payoff (McCormick envelope)

Bellman equation is

$$J^{M}(r) = \max_{n \le D(r)} pn + \mathbb{E}_{Q} \left[\max_{\ell \ge 0} \beta J^{M}[\delta \hat{v}(\ell) + (1 - \delta)r] - \underline{C}(n, \ell, Q) \right]$$

$$\pi_D$$

on $\bar{Q} = \mathbb{E}_F[Q]$

$C(n, \ell, Q) = c(n\ell - Q)^+ \ge c \left[\psi(n, \ell) - Q \right]^+ := \underline{C}(n, \ell, Q)$

- Deterministic fluid approximation policy
- Replaces random $Q \sim F$ with expectation Bellman equation is

$$J^{\pi_D}(r) = \max_{\substack{n \le D(r), \ell \ge 0}} pn - C(\ell, n, \overline{Q}) + \beta J^{\pi_D} \left[\delta \hat{v}(\ell) + (1 - \delta)r \right]$$

Convex relaxation of single-period payoff (McCormick envelope)

Bellman equation is

$$J^{M}(r) = \max_{n \le D(r)} pn + \mathbb{E}_{Q} \left[\max_{\ell \ge 0} \beta J^{M}[\delta \hat{v}(\ell) + (1 - \delta)r] - \underline{C}(n, \ell, Q) \right]$$

Putting together, the Bellman equation is further reduced to

$$\pi_D$$

on $\bar{Q} = \mathbb{E}_F[Q]$

$C(n, \ell, Q) = c(n\ell - Q)^+ \ge c \left[\psi(n, \ell) - Q \right]^+ := \underline{C}(n, \ell, Q)$

- Deterministic fluid approximation policy
- Replaces random $Q \sim F$ with expectation Bellman equation is

$$J^{\pi_D}(r) = \max_{\substack{n \le D(r), \ell \ge 0}} pn - C(\ell, n, \overline{Q}) + \beta J^{\pi_D} \left[\delta \hat{v}(\ell) + (1 - \delta)r \right]$$

Convex relaxation of single-period payoff (McCormick envelope)

Bellman equation is

$$J^{M}(r) = \max_{n \le D(r)} pn + \mathbb{E}_{Q} \left[\max_{\ell \ge 0} \beta J^{M}[\delta \hat{v}(\ell) + (1 - \delta)r] - \underline{C}(n, \ell, Q) \right]$$

Putting together, the Bellman equation is further reduced to

 $n \leq D(r), \ell \geq 0$

$$\pi_D$$

on $\bar{Q} = \mathbb{E}_F[Q]$

$C(n, \ell, Q) = c(n\ell - Q)^+ \ge c \left[\psi(n, \ell) - Q \right]^+ := \underline{C}(n, \ell, Q)$

 $J^{MD}(r) = \max pn - \underline{C}(\ell, n, \overline{Q}) + \beta J^{MD} \left[\delta \hat{v}(\ell) + (1 - \delta)r\right]$

 $p \ge c$, then $n^{MD}(r) = D(r)$.

Otherwise, if p < c, we have $n^{MD}(r) =$ the solution to max $p\bar{Q} + (1 - \ell)\bar{n}p$ $\ell \in [0,1]$

Proposition $n^{MD}(r)$ increases in r and $\ell^{MD}(r)$ decreases in r. Specifically, if

$$= D(r) - \left[\ell^{MD}(r)D(r) - \bar{Q}\right]^+, \text{ where } \ell^{MD}(r) \text{ is} \\ + \beta J^{MD} \left[\delta \hat{v}(\ell) + (1 - \delta)r\right].$$

 $p \ge c$, then $n^{MD}(r) = D(r)$.

Otherwise, if p < c, we have $n^{MD}(r) =$ the solution to max $p\bar{Q} + (1 - \ell)\bar{n}p$ $\ell \in [0,1]$

• When $p \ge c$

Proposition $n^{MD}(r)$ increases in r and $\ell^{MD}(r)$ decreases in r. Specifically, if

$$= D(r) - \left[\ell^{MD}(r)D(r) - \bar{Q}\right]^+, \text{ where } \ell^{MD}(r) \text{ is} \\ + \beta J^{MD} \left[\delta \hat{v}(\ell) + (1 - \delta)r\right].$$

 $p \ge c$, then $n^{MD}(r) = D(r)$.

Otherwise, if p < c, we have $n^{MD}(r) =$ the solution to max $p\bar{Q} + (1 - \ell)\bar{n}p$ $\ell \in [0,1]$

- When $p \ge c$
 - average bag value based on leftovers

Proposition $n^{MD}(r)$ increases in r and $\ell^{MD}(r)$ decreases in r. Specifically, if

$$= D(r) - \left[\ell^{MD}(r)D(r) - \bar{Q}\right]^{+}, \text{ where } \ell^{MD}(r) \text{ is} \\ + \beta J^{MD} \left[\delta \hat{v}(\ell) + (1 - \delta)r\right].$$

• The store maximizes short-term profits by distributing the maximum number of bags, adjusting the

 $p \ge c$, then $n^{MD}(r) = D(r)$.

Otherwise, if p < c, we have $n^{MD}(r) =$ the solution to max $p\bar{Q} + (1 - \ell)\bar{n}p$ $\ell \in [0,1]$

• When $p \ge c$

• The store maximizes short-term profits by distributing the maximum number of bags, adjusting the average bag value based on leftovers

• When p < c

Proposition $n^{MD}(r)$ increases in r and $\ell^{MD}(r)$ decreases in r. Specifically, if

$$= D(r) - \left[\ell^{MD}(r)D(r) - \bar{Q}\right]^{+}, \text{ where } \ell^{MD}(r) \text{ is} \\ + \beta J^{MD} \left[\delta \hat{v}(\ell) + (1 - \delta)r\right].$$

 $p \ge c$, then $n^{MD}(r) = D(r)$.

Otherwise, if p < c, we have $n^{MD}(r) =$ the solution to max $p\bar{Q} + (1 - \ell)\bar{n}p$ $\ell \in [0,1]$

- When $p \ge c$
 - average bag value based on leftovers
- When p < c
 - efficiently

Proposition $n^{MD}(r)$ increases in r and $\ell^{MD}(r)$ decreases in r. Specifically, if

$$= D(r) - \left[\ell^{MD}(r)D(r) - \bar{Q}\right]^{+}, \text{ where } \ell^{MD}(r) \text{ is} \\ + \beta J^{MD} \left[\delta \hat{v}(\ell) + (1 - \delta)r\right].$$

• The store maximizes short-term profits by distributing the maximum number of bags, adjusting the

• The store reduces the number of bags to optimize costs, using the available leftover food more

Performance Bound of Relaxed Policy

Performance Bound of Relaxed Policy

Proposition It holds that $J^{\pi_D} \leq J^*(r) \leq J^M(r) \leq J^{MD}(r)$, and $J^*(r) - J^{\pi_D}(r) \leq J^{MD}(r) - J^{\pi_D}(r) \leq \frac{c}{1-\beta} \cdot \left[\frac{\sigma}{2} + \left(\sqrt{D(r)} - \sqrt{\bar{Q}/\bar{x}}\right)^2\right]$

Performance Bound of Relaxed Policy

Remark: the performance bound is tighter when

- \circ Smaller time discount factor β
- Lower supplementary costs *C*
- $^{\circ}$ Smaller standard deviation σ
- ° Aligning \overline{Q} with xD(r)

Proposition It holds that $J^{\pi_D} \leq J^*(r) \leq J^M(r) \leq J^{MD}(r)$, and $J^*(r) - J^{\pi_D}(r) \leq J^{MD}(r) - J^{\pi_D}(r) \leq \frac{c}{1-\beta} \cdot \left[\frac{\sigma}{2} + \left(\sqrt{D(r)} - \sqrt{\bar{Q}/\bar{x}}\right)^2\right]$

Proposition Under the optimal policy with deterministic leftover, the steadystate bag value converges to ℓ^* , corresponding to the store's steady-state reputation $r^* = \hat{v}(\ell^*)$ and bag number $n^* = D(r^*) = D[\hat{v}(\ell^*)]$. The steady-state bag value is the unique solution to

 $\frac{cD[\hat{v}(\ell^*)]}{(p - c\ell^*)D'[\hat{v}(\ell$

$$\frac{\beta\delta\hat{v}'(\ell^*)}{1-\beta(1-\delta)}$$

Proposition Under the optimal policy with deterministic leftover, the steadystate bag value converges to ℓ^* , corresponding to the store's steady-state reputation $r^* = \hat{v}(\ell^*)$ and bag number $n^* = D(r^*) = D[\hat{v}(\ell^*)]$. The steady-state bag value is the unique solution to

 $\frac{cD[\hat{v}(\ell^*)]}{(p - c\ell^*)D'[\hat{v}(\ell$

• Implication: Stores do not need to maintain a *perfect* rating

$$\frac{\beta\delta\hat{v}'(\ell^*)}{1-\beta(1-\delta)}$$

Proposition Under the optimal policy with deterministic leftover, the steadystate bag value converges to ℓ^* , corresponding to the store's steady-state reputation $r^* = \hat{v}(\ell^*)$ and bag number $n^* = D(r^*) = D[\hat{v}(\ell^*)]$. The steady-state bag value is the unique solution to $\frac{cD[\hat{v}(\ell^*)]}{(p - c\ell^*)D'[\hat{v}(\ell$

- Implication: Stores do not need to maintain a *perfect* rating
- Each store reaches a different long-term reputation level, with key influencing factors:
 - Cost structure
 - Consumer preferences
 - Demand dynamics
 - Reputation update mechanism

$$\frac{\beta\delta\hat{v}'(\ell^*)}{1-\beta(1-\delta)}$$

Numerical Experiments

Numerical Experiments

- Experiment setup
 - We assume a simple logstic utility function with one reference point, given by $v(x) = \frac{1}{1 + e^{-10(x-0.5)}}.$

• Its upper concave
envelope can be
expressed as
$$\hat{v}(x) = \begin{cases} 1.25x & \text{if } x \in [0,0.676];\\ \frac{1}{1+e^{-10(x-0.5)}} & \text{if } x \in (0.676,1]. \end{cases}$$

Numerical Experiments

• Experiment setup

• We assume a simple logstic utility function with one reference point, given by

$$v(x) = \frac{1}{1 + e^{-10(x - 0.5)}}$$

• Its upper concave envelope can be expressed as $\hat{v}(x) = \begin{cases} 1.25x & \text{if } x \in [0,0.676]; \\ \frac{1}{1+e^{-10(x-0.5)}} & \text{if } x \in (0.676,1]. \end{cases}$ 0

Optimal policy

(c) Number of support points of $\phi^*(\cdot | \ell^*(r, Q))$

(d) Supplementary at optimality $n^*(r)\ell^*(r,Q) - Q$

Policy Comparison: Revenue

deterministic approximation policy π_D , and iv) the naive policy π_N .

Average revenues under different policies

Parameters $(c, \delta), Q \sim F$	Optimal	2-LA	DFA	Naive
$(5, 0.3), Q \sim U[0, 12]$	844.12 ± 13.91	841.82 ± 14.39	793.92 ± 10.44	787.78 ± 25.27
$(5, 0.6), Q \sim U[0, 12]$	931.70 ± 14.03	921.89 ± 14.07	870.41 ± 9.04	867.68 ± 27.23
$(10, 0.3), Q \sim U[0, 12]$	827.59 ± 21.78	826.44 ± 21.89	796.61 ± 23.44	794.27 ± 32.37
$(10, 0.6), Q \sim U[0, 12]$	910.14 ± 18.10	900.15 ± 18.10	858.10 ± 19.05	880.94 ± 25.72
$(5, 0.3), Q \sim U[3, 9]$	850.48 ± 10.77	849.39 ± 11.20	829.41 ± 7.32	849.96 ± 11.43
$(5, 0.6), Q \sim U[3, 9]$	921.94 ± 7.18	891.93 ± 7.20	916.91 ± 5.87	890.39 ± 7.64
$(10, 0.3), Q \sim U[3, 9]$	856.73 ± 8.80	855.63 ± 8.76	801.22 ± 10.99	859.46 ± 8.78
$(10, 0.6), Q \sim U[3, 9]$	936.56 ± 9.60	926.56 ± 9.60	889.64 ± 13.54	909.09 ± 9.61

Note: \pm indicates the half-width of the 95% confidence interval for the estimated means of each metric.

• We compare four policies: i) the optimal policy π^* , ii) the 2-LA policy $\pi^{(2)}$, iii) the

Policy Comparison: Waste

deterministic approximation policy π_D , and iv) the naive policy π_N .

Average in-store waste under different policies

• We compare four policies: i) the optimal policy π^* , ii) the 2-LA policy $\pi^{(2)}$, iii) the

	2-LA	DFA	Naive
)7	6.59 ± 2.08	22.82 ± 2.72	8.15 ± 1.66
_4	5.19 ± 2.14	22.12 ± 2.27	8.20 ± 1.66
)3	8.09 ± 2.01	24.36 ± 3.20	9.06 ± 1.60
76	6.83 ± 1.76	22.74 ± 3.23	8.56 ± 1.26
9	6.94 ± 1.19	14.75 ± 1.74	6.77 ± 1.19
$_{-}7$	6.65 ± 1.17	13.99 ± 1.26	6.62 ± 1.17
)()	7.60 ± 0.93	15.94 ± 1.54	6.77 ± 0.90
B O	6.26 ± 1.30	15.85 ± 1.41	5.87 ± 1.33

Note: \pm indicates the half-width of the 95% confidence interval for the estimated means of each metric.

Numerical Experiments: System Convergence

Right: High c/p ratio

Summary

Infinite-Horizon Model

Captures reputation's dynamic impact on demand through a two-stage decision process.

Infinite-Horizon Model

Captures reputation's dynamic impact on demand through a two-stage decision process.

- Optimal Bag Distribution
 - One bag type if consumer utility is concave concave envelope.

• One bag type if consumer utility is concave; otherwise up to two types identified via an upper

Infinite-Horizon Model

Captures reputation's dynamic impact on demand through a two-stage decision process.

Optimal Bag Distribution

concave envelope.

Approximation Policies

performance guarantees.

• One bag type if consumer utility is concave; otherwise up to two types identified via an upper

Lookahead and Deterministic Fluid approaches—both yield clear, near-optimal structures with

Infinite-Horizon Model

Captures reputation's dynamic impact on demand through a two-stage decision process.

Optimal Bag Distribution

concave envelope.

Approximation Policies

performance guarantees.

Steady-State Analysis

by cost-to-profit ratio and reputation update sensitivity.

One bag type if consumer utility is concave; otherwise up to two types identified via an upper

Lookahead and Deterministic Fluid approaches—both yield clear, near-optimal structures with

• Under deterministic surplus, the system converges to a unique steady-state reputation, influenced

Infinite-Horizon Model

Captures reputation's dynamic impact on demand through a two-stage decision process.

Optimal Bag Distribution

concave envelope.

Approximation Policies

performance guarantees.

Steady-State Analysis

by cost-to-profit ratio and reputation update sensitivity.

Future Directions

End-to-end management/ Information disclosure / Pricing effects /...

• One bag type if consumer utility is concave; otherwise up to two types identified via an upper

Lookahead and Deterministic Fluid approaches—both yield clear, near-optimal structures with

Under deterministic surplus, the system converges to a unique steady-state reputation, influenced

Thank you for your attention!

Questions and comments are appreciated! Email: hansheng.jiang@rotman.utoronto.ca

Hansheng Jiang (University of Toronto) 32