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Too Good To Go 

“ Users purchase Surprise Bags filled 
with a mix of surplus food items. 


We know that food waste varies on a day-
to-day basis, so this is our way of making 
sure retailers have the flexibility to sell 
genuine surplus - whatever that ends up 
being. 


Surprise Bags are sold at a reduced price 
of the contents’ original retail value, 
typically priced at approximately 25 to 50% 
of the original retail value.                                             

Source: Tiktok

Viral social media influence

”
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Participating businesses 
list surprise bags of 
surplus foods

Customers reserve bags 
at highly discounted 
price

Customers self pick up 
during designated time 
slots

Customers leave a rating 
and aggregate rating is 
revealed

Key Features of the Platform

Customer Self-Pickup: Customers pick up surprise bags directly 
from stores, minimizing logistics for the retailer

Information Design: A single rating system is used to maintain the 
surprise element for customers

Commission-Based Fee: The platform charges a commission for 
each bag sold
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Sales are driven by customer ratings, which are influenced by the 
uncertain quantity and quality of surplus food

• Unpredictability
Amount of surplus foods are unknown until the point of sale, 
making it difficult to predict customer satisfaction

• Decision under uncertain supply
Stores must list available surprise bags 24 hours in advance 
without knowing the exact surplus quantity or value

• Allocate content across surprise bags
The common approach is to evenly distribute surplus items across 
all bags, ensuring a similar monetary value. However, this may not 
always maximize consumer satisfaction
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Research Question

How many surprise bags should be offered?
How much total food should be included in the bags?
How should the food be allocated across each bag?

 
Our Research Contribution 

Supports the development of these systems by 
exploring optimal bag design strategies that ensure 

long-term profitability and satisfaction
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Expiration date: perishable inventory control, product display strategies, markdown pricing and 
promotion, technology-driven innovation to increase traceability (blockchain, AI) 

• Traditional channels of surplus foods
Donation to food bank requires scale of similar products and involved volunteers with 
decentralized efforts, which do not scale well

• Innovative surplus food management as of TGTG (New and quickly growing!)

Focus on clearance: Yang and Yu (2024) show how surplus food sales reduce waste and boost 
profits, but may lead to increased consumer-side waste

Our difference: We explore store reputation and the trade-offs between short-term profits and 
long-term reputation building in the context of TGTG
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product attributes) contributes to understanding consumer behavior in 
surprise bag sales 

• Reputation management
Reputation is central in our model, as customer satisfaction influences 
future demand. Previous research examines the role of ratings and 
pricing in shaping reputation

• Positioning of our work
Our paper is one of the first to examine opaque selling to reduce food 
waste, and the first to explore the optimal dynamic design of probabilistic 
goods in this context.
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• Consumer utility v(x)
Non-linear function (anchored to posted price and paid price)

Example: Prospect theory (gains/losses asymmetry)  Higher utility for perceived “bargains”→
 is non-decreasing, differentiable, bounded slopev(x)

• Allocation distribution ϕt( ⋅ )
 stands for the proportion (density) of bags with value ϕt(x) x

• Population average utility V[ϕt( ⋅ )]

V[ϕt( ⋅ )] := ∫
∞

0
v(x)ϕt(x)dx
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• Reputation update rule
rt+1 = δV[ϕt( ⋅ )] + (1 − δ)rt

• Demand D(rt)
Demand is concave, increasing in reputation (diminishing returns)
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average utility derived from the distributed surprise bags during period t, given by V [�t(·)] as

defined in (2). The evolution of the store’s reputation follows an exponential smoothing mecha-

nism, described by:

rt+1 = �V [�t(·)] + (1� �)rt. (5)

Here, � 2 (0,1) denotes the weight assigned to recent consumers’ satisfaction in updating the

rating. This variable is influenced by the time window over which historical ratings are aggregated

to compute the total rating displayed (e.g., 2 months, as shown in Figure 2).

Figure 2 Total rating of a store on TGTG based on 46 historical ratings over the past 2 months

In essence, the store’s reputation for the next period is a convex combination of the current rep-

utation and the performance of the surprise bags distributed in the present period. This exponential

smoothing model, incorporating recent average performance, is widely used in both theoretical

and empirical studies to capture the evolution of a firm’s reputation or consumers’ perception of

product or service quality (see, e.g., Gaur and Park 2007, Yang et al. 2019, Cho et al. 2024, Carnehl

et al. 2024).

In summary, the sequence of events within period t is illustrated in Figure 3.

Figure 3 Sequence of events in period t with two stages

Time

Seller observes the
recent reputation rt

Seller selects the
# of bags: nt D(rt)

Leftover food
realized: Qt ⇠ F

Seller designs food dist.:
�t(x) :R+ !R+

Payoff realized:
R[�t(·), nt,Qt]

Reputation update
rt+1 = �V [�t(·)] + (1� �)rt

Stage I Stage II

As illustrated in Figure 3, the store sequentially makes a two-stage decision in each period:

Sequence of events in period t

Two-Stage Decision in Each Periods

15



Hansheng Jiang (University of Toronto)

Authors’ names not included for peer review
Article submitted to 13

average utility derived from the distributed surprise bags during period t, given by V [�t(·)] as

defined in (2). The evolution of the store’s reputation follows an exponential smoothing mecha-

nism, described by:

rt+1 = �V [�t(·)] + (1� �)rt. (5)

Here, � 2 (0,1) denotes the weight assigned to recent consumers’ satisfaction in updating the

rating. This variable is influenced by the time window over which historical ratings are aggregated

to compute the total rating displayed (e.g., 2 months, as shown in Figure 2).

Figure 2 Total rating of a store on TGTG based on 46 historical ratings over the past 2 months

In essence, the store’s reputation for the next period is a convex combination of the current rep-

utation and the performance of the surprise bags distributed in the present period. This exponential

smoothing model, incorporating recent average performance, is widely used in both theoretical

and empirical studies to capture the evolution of a firm’s reputation or consumers’ perception of

product or service quality (see, e.g., Gaur and Park 2007, Yang et al. 2019, Cho et al. 2024, Carnehl

et al. 2024).

In summary, the sequence of events within period t is illustrated in Figure 3.

Figure 3 Sequence of events in period t with two stages

Time

Seller observes the
recent reputation rt

Seller selects the
# of bags: nt D(rt)

Leftover food
realized: Qt ⇠ F

Seller designs food dist.:
�t(x) :R+ !R+

Payoff realized:
R[�t(·), nt,Qt]

Reputation update
rt+1 = �V [�t(·)] + (1� �)rt

Stage I Stage II

As illustrated in Figure 3, the store sequentially makes a two-stage decision in each period:

Sequence of events in period t

• Stage I: Upon observing the current reputation , the store selects the number of 
bags to be distributed, , which must satisfy , before the realization of 
random surplus 

rt
nt nt ≤ D(rt)

Qt

Two-Stage Decision in Each Periods

15



Hansheng Jiang (University of Toronto)

Authors’ names not included for peer review
Article submitted to 13

average utility derived from the distributed surprise bags during period t, given by V [�t(·)] as

defined in (2). The evolution of the store’s reputation follows an exponential smoothing mecha-

nism, described by:

rt+1 = �V [�t(·)] + (1� �)rt. (5)

Here, � 2 (0,1) denotes the weight assigned to recent consumers’ satisfaction in updating the

rating. This variable is influenced by the time window over which historical ratings are aggregated

to compute the total rating displayed (e.g., 2 months, as shown in Figure 2).

Figure 2 Total rating of a store on TGTG based on 46 historical ratings over the past 2 months

In essence, the store’s reputation for the next period is a convex combination of the current rep-

utation and the performance of the surprise bags distributed in the present period. This exponential

smoothing model, incorporating recent average performance, is widely used in both theoretical

and empirical studies to capture the evolution of a firm’s reputation or consumers’ perception of

product or service quality (see, e.g., Gaur and Park 2007, Yang et al. 2019, Cho et al. 2024, Carnehl

et al. 2024).

In summary, the sequence of events within period t is illustrated in Figure 3.

Figure 3 Sequence of events in period t with two stages

Time

Seller observes the
recent reputation rt

Seller selects the
# of bags: nt D(rt)

Leftover food
realized: Qt ⇠ F

Seller designs food dist.:
�t(x) :R+ !R+

Payoff realized:
R[�t(·), nt,Qt]

Reputation update
rt+1 = �V [�t(·)] + (1� �)rt

Stage I Stage II

As illustrated in Figure 3, the store sequentially makes a two-stage decision in each period:

Sequence of events in period t

• Stage I: Upon observing the current reputation , the store selects the number of 
bags to be distributed, , which must satisfy , before the realization of 
random surplus 

rt
nt nt ≤ D(rt)

Qt

Two-Stage Decision in Each Periods

15



Hansheng Jiang (University of Toronto)

Authors’ names not included for peer review
Article submitted to 13

average utility derived from the distributed surprise bags during period t, given by V [�t(·)] as

defined in (2). The evolution of the store’s reputation follows an exponential smoothing mecha-

nism, described by:

rt+1 = �V [�t(·)] + (1� �)rt. (5)

Here, � 2 (0,1) denotes the weight assigned to recent consumers’ satisfaction in updating the

rating. This variable is influenced by the time window over which historical ratings are aggregated

to compute the total rating displayed (e.g., 2 months, as shown in Figure 2).

Figure 2 Total rating of a store on TGTG based on 46 historical ratings over the past 2 months

In essence, the store’s reputation for the next period is a convex combination of the current rep-

utation and the performance of the surprise bags distributed in the present period. This exponential

smoothing model, incorporating recent average performance, is widely used in both theoretical

and empirical studies to capture the evolution of a firm’s reputation or consumers’ perception of

product or service quality (see, e.g., Gaur and Park 2007, Yang et al. 2019, Cho et al. 2024, Carnehl

et al. 2024).

In summary, the sequence of events within period t is illustrated in Figure 3.

Figure 3 Sequence of events in period t with two stages

Time

Seller observes the
recent reputation rt

Seller selects the
# of bags: nt D(rt)

Leftover food
realized: Qt ⇠ F

Seller designs food dist.:
�t(x) :R+ !R+

Payoff realized:
R[�t(·), nt,Qt]

Reputation update
rt+1 = �V [�t(·)] + (1� �)rt

Stage I Stage II

As illustrated in Figure 3, the store sequentially makes a two-stage decision in each period:

Sequence of events in period t

• Stage I: Upon observing the current reputation , the store selects the number of 
bags to be distributed, , which must satisfy , before the realization of 
random surplus 

rt
nt nt ≤ D(rt)

Qt

Two-Stage Decision in Each Periods

15



Hansheng Jiang (University of Toronto)

Authors’ names not included for peer review
Article submitted to 13

average utility derived from the distributed surprise bags during period t, given by V [�t(·)] as

defined in (2). The evolution of the store’s reputation follows an exponential smoothing mecha-

nism, described by:

rt+1 = �V [�t(·)] + (1� �)rt. (5)

Here, � 2 (0,1) denotes the weight assigned to recent consumers’ satisfaction in updating the

rating. This variable is influenced by the time window over which historical ratings are aggregated

to compute the total rating displayed (e.g., 2 months, as shown in Figure 2).

Figure 2 Total rating of a store on TGTG based on 46 historical ratings over the past 2 months

In essence, the store’s reputation for the next period is a convex combination of the current rep-

utation and the performance of the surprise bags distributed in the present period. This exponential

smoothing model, incorporating recent average performance, is widely used in both theoretical

and empirical studies to capture the evolution of a firm’s reputation or consumers’ perception of

product or service quality (see, e.g., Gaur and Park 2007, Yang et al. 2019, Cho et al. 2024, Carnehl

et al. 2024).

In summary, the sequence of events within period t is illustrated in Figure 3.

Figure 3 Sequence of events in period t with two stages

Time

Seller observes the
recent reputation rt

Seller selects the
# of bags: nt D(rt)

Leftover food
realized: Qt ⇠ F

Seller designs food dist.:
�t(x) :R+ !R+

Payoff realized:
R[�t(·), nt,Qt]

Reputation update
rt+1 = �V [�t(·)] + (1� �)rt

Stage I Stage II

As illustrated in Figure 3, the store sequentially makes a two-stage decision in each period:

Sequence of events in period t

• Stage I: Upon observing the current reputation , the store selects the number of 
bags to be distributed, , which must satisfy , before the realization of 
random surplus 

rt
nt nt ≤ D(rt)

Qt

• Stage II: After observing the leftover food , the store determines the food value 
distribution across bags, represented by the function , based on 

Qt
ϕt( ⋅ ) : ℝ+ → ℝ+

(rt, nt, Qt)

Two-Stage Decision in Each Periods

15



Hansheng Jiang (University of Toronto)

Authors’ names not included for peer review
Article submitted to 13

average utility derived from the distributed surprise bags during period t, given by V [�t(·)] as

defined in (2). The evolution of the store’s reputation follows an exponential smoothing mecha-

nism, described by:

rt+1 = �V [�t(·)] + (1� �)rt. (5)

Here, � 2 (0,1) denotes the weight assigned to recent consumers’ satisfaction in updating the

rating. This variable is influenced by the time window over which historical ratings are aggregated

to compute the total rating displayed (e.g., 2 months, as shown in Figure 2).

Figure 2 Total rating of a store on TGTG based on 46 historical ratings over the past 2 months

In essence, the store’s reputation for the next period is a convex combination of the current rep-

utation and the performance of the surprise bags distributed in the present period. This exponential

smoothing model, incorporating recent average performance, is widely used in both theoretical

and empirical studies to capture the evolution of a firm’s reputation or consumers’ perception of

product or service quality (see, e.g., Gaur and Park 2007, Yang et al. 2019, Cho et al. 2024, Carnehl

et al. 2024).

In summary, the sequence of events within period t is illustrated in Figure 3.

Figure 3 Sequence of events in period t with two stages

Time

Seller observes the
recent reputation rt

Seller selects the
# of bags: nt D(rt)

Leftover food
realized: Qt ⇠ F

Seller designs food dist.:
�t(x) :R+ !R+

Payoff realized:
R[�t(·), nt,Qt]

Reputation update
rt+1 = �V [�t(·)] + (1� �)rt

Stage I Stage II

As illustrated in Figure 3, the store sequentially makes a two-stage decision in each period:

Sequence of events in period t

• Stage I: Upon observing the current reputation , the store selects the number of 
bags to be distributed, , which must satisfy , before the realization of 
random surplus 

rt
nt nt ≤ D(rt)

Qt

• Stage II: After observing the leftover food , the store determines the food value 
distribution across bags, represented by the function , based on 

Qt
ϕt( ⋅ ) : ℝ+ → ℝ+

(rt, nt, Qt)

Two-Stage Decision in Each Periods

15



Hansheng Jiang (University of Toronto)

Authors’ names not included for peer review
Article submitted to 13

average utility derived from the distributed surprise bags during period t, given by V [�t(·)] as

defined in (2). The evolution of the store’s reputation follows an exponential smoothing mecha-

nism, described by:

rt+1 = �V [�t(·)] + (1� �)rt. (5)

Here, � 2 (0,1) denotes the weight assigned to recent consumers’ satisfaction in updating the

rating. This variable is influenced by the time window over which historical ratings are aggregated

to compute the total rating displayed (e.g., 2 months, as shown in Figure 2).

Figure 2 Total rating of a store on TGTG based on 46 historical ratings over the past 2 months

In essence, the store’s reputation for the next period is a convex combination of the current rep-

utation and the performance of the surprise bags distributed in the present period. This exponential

smoothing model, incorporating recent average performance, is widely used in both theoretical

and empirical studies to capture the evolution of a firm’s reputation or consumers’ perception of

product or service quality (see, e.g., Gaur and Park 2007, Yang et al. 2019, Cho et al. 2024, Carnehl

et al. 2024).

In summary, the sequence of events within period t is illustrated in Figure 3.

Figure 3 Sequence of events in period t with two stages

Time

Seller observes the
recent reputation rt

Seller selects the
# of bags: nt D(rt)

Leftover food
realized: Qt ⇠ F

Seller designs food dist.:
�t(x) :R+ !R+

Payoff realized:
R[�t(·), nt,Qt]

Reputation update
rt+1 = �V [�t(·)] + (1� �)rt

Stage I Stage II

As illustrated in Figure 3, the store sequentially makes a two-stage decision in each period:

Sequence of events in period t

• Stage I: Upon observing the current reputation , the store selects the number of 
bags to be distributed, , which must satisfy , before the realization of 
random surplus 

rt
nt nt ≤ D(rt)

Qt

• Stage II: After observing the leftover food , the store determines the food value 
distribution across bags, represented by the function , based on 

Qt
ϕt( ⋅ ) : ℝ+ → ℝ+

(rt, nt, Qt)

Two-Stage Decision in Each Periods

15



Hansheng Jiang (University of Toronto)

Optimal Bag Design Problem

16



Hansheng Jiang (University of Toronto)

Optimal Bag Design Problem
• An admissible stationary policy, denoted by , consists of two decision stagesπ

16



Hansheng Jiang (University of Toronto)

Optimal Bag Design Problem
• An admissible stationary policy, denoted by , consists of two decision stagesπ

(i) r ↦ nπ

16



Hansheng Jiang (University of Toronto)

Optimal Bag Design Problem
• An admissible stationary policy, denoted by , consists of two decision stagesπ

(i) r ↦ nπ

(ii) (r, n, Q) ↦ ϕπ( ⋅ )

16



Hansheng Jiang (University of Toronto)

Optimal Bag Design Problem
• An admissible stationary policy, denoted by , consists of two decision stagesπ

(i) r ↦ nπ

(ii) (r, n, Q) ↦ ϕπ( ⋅ )

16



Hansheng Jiang (University of Toronto)

Optimal Bag Design Problem
• An admissible stationary policy, denoted by , consists of two decision stagesπ

(i) r ↦ nπ

(ii) (r, n, Q) ↦ ϕπ( ⋅ )

max
π∈Π

lim
T→∞

𝔼Qt∼F [
T

∑
t=0

βtR [ϕπ
t ( ⋅ ), nπ

t , Qt]]
subject to 0 ≤ nπ

t ≤ D(rt),

∫
∞

0
ϕπ

t (x)dx = 1,

rt+1 = δV[ϕπ
t ( ⋅ )] + (1 − δ)rt .
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Figure 4 Consumers utility function v(x) and its upper concave envelope v̂(x) in Example 1

: v(x); : v̂(x) where v̂(x) = v(x); : v̂(x) where v̂(x) 6= v(x).

Note. v̂(x) = v(x) for x2 {x}[ [x1, x2][ [x3, x̄], and v̂(x)> v(x) for x2 (x,x1)[ (x2, x3). Note that x1 > pB and x3 > pA.

The consumer’s utility v(x) increases most sharply around the bag price pB and the posted value

of the contents pA. This indicates that consumers derive the highest marginal satisfaction when

the actual value of the food surpasses these reference prices. However, shortly after crossing these

thresholds, the marginal utility diminishes significantly, and the perceived satisfaction stabilizes.

We define the intervals XP := [x,x1] [ [x2, x3] as the potential regions, where the consumer’s

utility exhibits the potential for sharp increases in response to additional gains in the food’s value.

Conversely, the intervals XS := (x1, x2)[ (x3, x̄) are termed the saturation regions, where the con-

sumer has already absorbed the initial value surprise and becomes less sensitive to further increases

in value. The different regions (potential or saturation) imply different optimal food distribution

strategies. Figure 4 illustrates two examples, `1 2XP and `2 2XS .

a) When the average food value in a bag falls within the saturation regions, such as `2 2 [x3, x̄]

in the figure, the seller optimizes by distributing the surplus food uniformly across all bags.

This results in a uniform food value (i.e., �⇤(· | `1) is a one-point distribution) and ensures the

population’s average utility is v̂(`2) = v(`2).

b) When the average food value in a bag falls within the potential region, such as in the case

where `1 2 (x,x1), the seller finds it optimal to prepare two distinct types of bags: one with

the minimal feasible value x and another with a higher value x1 (i.e., �⇤(· | `1) is a two-

point distribution). To achieve the average bag value `1, the seller allocates the two types of

bags in proportions x1�`1
x1�x and `1�x

x1�x , which represent the probabilities that a random consumer

Consumer utility function  and its upper concave envelope v(x) ̂v(x)
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Proposition Under the 1-LA policy (i.e., myopic policy), the optimal bag number 
is  and the optimal bag value is .  ñ(1)(r) = D(r) ℓ̃(1)(r, Q) = min{x̄, Q/D(r)}
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Proposition The revenue gap between the optimal policy and the -LA 

policy is bounded by 

K
J*(r) − J̃(K)(r) ≤

βK pκδζ
(1 − (1 − δ)β)(1 − βK)

.
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Performance Bound of Lookahead Approximation

• Remark: the performance bound is tighter when: 
Time discount factor  is small

Weight on new consumers' utility in reputation updating  is small

Number of lookahead periods  is more

Maximal sensitivity of demand in response to reputation  is low

Maximal sensitivity of consumers' utility to food value  is small

β
δ

K
ζ

κ

22
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Bellman equation is

Q ∼ F Q̄ = 𝔼F[Q]

JπD(r) = max
n≤D(r),ℓ≥0

pn − C(ℓ, n, Q̄) + βJπD [δ ̂v(ℓ) + (1 − δ)r]
• Convex relaxation of single-period payoff (McCormick envelope)

Bellman equation is

C(n, ℓ, Q) = c(nℓ − Q)+ ≥ c [ψ(n, ℓ) − Q]+ := C(n, ℓ, Q)

JM(r) = max
n≤D(r)

pn + 𝔼Q [max
ℓ≥0

βJM[δ ̂v(ℓ) + (1 − δ)r] − C(n, ℓ, Q)]
• Putting together, the Bellman equation is further reduced to

JMD(r) = max
n≤D(r),ℓ≥0

pn − C(ℓ, n, Q̄) + βJMD [δ ̂v(ℓ) + (1 − δ)r]
23
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Proposition  increases in  and  decreases in . Specifically, if 
, then . 

Otherwise, if , we have , where  is 
the solution to 

nMD(r) r ℓMD(r) r
p ≥ c nMD(r) = D(r)

p < c nMD(r) = D(r) − [ℓMD(r)D(r) − Q̄]+ ℓMD(r)
max

ℓ∈[0,1]
pQ̄ + (1 − ℓ)n̄p + βJMD [δ ̂v(ℓ) + (1 − δ)r] .
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Proposition  increases in  and  decreases in . Specifically, if 
, then . 

Otherwise, if , we have , where  is 
the solution to 

nMD(r) r ℓMD(r) r
p ≥ c nMD(r) = D(r)

p < c nMD(r) = D(r) − [ℓMD(r)D(r) − Q̄]+ ℓMD(r)
max

ℓ∈[0,1]
pQ̄ + (1 − ℓ)n̄p + βJMD [δ ̂v(ℓ) + (1 − δ)r] .

• When p ≥ c
The store maximizes short-term profits by distributing the maximum number of bags, adjusting the 
average bag value based on leftovers 

• When p < c
The store reduces the number of bags to optimize costs, using the available leftover food more 
efficiently
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Performance Bound of Relaxed Policy
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Proposition It holds that , and JπD ≤ J*(r) ≤ JM(r) ≤ JMD(r)

J*(r) − JπD(r) ≤ JMD(r) − JπD(r) ≤
c

1 − β
⋅ [ σ

2
+ ( D(r) − Q̄/x̄)

2

]
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Performance Bound of Relaxed Policy

• Remark: the performance bound is tighter when
Smaller time discount factor 

Lower supplementary costs 

Smaller standard deviation 

Aligning  with 

β
c

σ
Q̄ xD(r)

25
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Steady State Analysis
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Proposition Under the optimal policy with deterministic leftover, the steady-
state bag value converges to , corresponding to the store's steady-state 
reputation  and bag number . The 
steady-state bag value is the unique solution to

ℓ*
r* = ̂v(ℓ*) n* = D(r*) = D[ ̂v(ℓ*)]

cD[ ̂v(ℓ*)]
(p − cℓ*)D′ [ ̂v(ℓ*)]

=
βδ ̂v′ (ℓ*)

1 − β(1 − δ)
.
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Steady State Analysis

• Implication: Stores do not need to maintain a perfect rating

• Each store reaches a different long-term reputation level, with key influencing factors:
Cost structure
Consumer preferences 
Demand dynamics 
Reputation update mechanism

26
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Numerical Experiments
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• Experiment setup
We assume a simple 
logstic utility function 
with one reference point, 
given by 

. 

Its upper concave 
envelope can be 
expressed as 

v(x) =
1

1 + e−10(x−0.5)

̂v(x) = {
1.25x  if x ∈ [0,0.676];

1
1 + e−10(x−0.5)  if x ∈ (0.676,1] .
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Figure 5 Optimal Policies and corresponding supplementary food

(a) Optimal bag number n⇤(r) (b) Optimal average bag value `⇤(r,Q)

(c) Number of support points of �⇤(· | `⇤(r,Q)) (d) Supplementary at optimality n⇤(r)`⇤(r,Q)�Q

diminishing marginal returns from further improving reputation. Figure 5(c) identifies the region

of (r,Q) where sellers choose to distribute either one or two types of bags. With a lower rating

or higher leftover value (Q), the store finds a higher optimal average bag value, making it more

likely to distribute leftovers uniformly, resulting in a single type of bag. Figure 5(d) illustrates the

non-monotonic nature of supplementary food, measured by `⇤(r,Q)n⇤(r)�Q, with respect to r.

At low reputation levels, the supplementary food amount is negative, indicating surplus food waste

due to low demand (driven by low reputation) and the capacity limits of a bag (¯̀). The supplemen-

tary food quantity initially increases as r rises and the number of bags increases, requiring more

supplementary food to maintain consumer satisfaction. However, once r surpasses a certain thresh-

old, the supplementary food quantity decreases as the marginal benefit from reputation building

diminishes, and the cost of supplementary food becomes significant due to the larger number of

bags.

Optimal policy
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Policy Comparison: Revenue
• We compare four policies: i) the optimal policy , ii) the 2-LA policy , iii) the 

deterministic approximation policy , and iv) the naive policy .
π* π(2)

πD πN

28
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Policy Performance Comparison by Simulation. We compare four policies: i) the optimal policy

⇡⇤, ii) the 2-LA policy ⇡(2), iii) the DFA policy ⇡D, and iv) the naive policy ⇡N .

The first policy represents the theoretical optimum. The second and third are approximation poli-

cies proposed in Section 6. The fourth policy—naive policy—follows a natural, intuitive approach,

where the number of bags aligns with demand n(r) =D(r), and the leftover is evenly distributed,

`(r,Q) =Q/n(r). We use the naive policy as a benchmark.

We evaluate the policies across three metrics: i) the objective value, defined as the long-

run discounted revenue earned by the store,
PT

t=0 �
tRt; ii) in-store food waste, measured by

PT
t=0 �

t(Qt � `tnt)+; and iii) the average number of bags,
PT

t=0 �
tnt. The third metric closely

correlates with household waste, although not explicitly modeled in this paper. Distributing more

bags increases the likelihood that food will be consumed before it expires, reducing household

waste. In this study, we use the number of bags as a proxy for household waste. Since the leftover

is exogenous and uniform across policies, a higher number of distributed bags results in less food

waste on the consumer side.

We apply a common sample path of leftover values {Qt} to all policies to reduce variance. The

time horizon is set at T = 1000, a sufficiently large value to approximate an infinite horizon. We

perform N = 20 independent simulation experiments to generate the mean value for each metric

along with its 95% confidence interval.

The average values of the three metrics are summarized in Tables 1, 2, and 3, respectively.

Table 1 Average Revenue Under Different Policies

Parameters (c, �),Q⇠ F Optimal 2-LA DFA Naive

(5,0.3),Q⇠U [0,12] 844.12± 13.91 841.82± 14.39 793.92± 10.44 787.78± 25.27
(5,0.6),Q⇠U [0,12] 931.70± 14.03 921.89± 14.07 870.41± 9.04 867.68± 27.23
(10,0.3),Q⇠U [0,12] 827.59± 21.78 826.44± 21.89 796.61± 23.44 794.27± 32.37
(10,0.6),Q⇠U [0,12] 910.14± 18.10 900.15± 18.10 858.10± 19.05 880.94± 25.72
(5,0.3),Q⇠U [3,9] 850.48± 10.77 849.39± 11.20 829.41± 7.32 849.96± 11.43
(5,0.6),Q⇠U [3,9] 921.94± 7.18 891.93± 7.20 916.91± 5.87 890.39± 7.64
(10,0.3),Q⇠U [3,9] 856.73± 8.80 855.63± 8.76 801.22± 10.99 859.46± 8.78
(10,0.6),Q⇠U [3,9] 936.56± 9.60 926.56± 9.60 889.64± 13.54 909.09± 9.61

Note: ± indicates the half-width of the 95% confidence interval for the estimated means of each metric.

In this simulation, we explore various parameter combinations, including cost c 2 {5,10},

weight on new performance in reputation updating � 2 {0.3,0.6}, and the variance of the surplus,

Q ⇠ F 2 {U [3,9],U [0,12]}. The results indicate that both approximation policies significantly

outperform the naive policy, demonstrating robust performance across different parameter settings.

Average revenues under different policies
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Policy Comparison: Waste
• We compare four policies: i) the optimal policy , ii) the 2-LA policy , iii) the 

deterministic approximation policy , and iv) the naive policy .
π* π(2)

πD πN
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Table 2 Average In-store Food Waste Under Different Policies

Parameters (c, �),Q⇠ F Optimal 2-LA DFA Naive

(5,0.3),Q⇠U [0,12] 6.44± 2.07 6.59± 2.08 22.82± 2.72 8.15± 1.66
(5,0.6),Q⇠U [0,12] 5.17± 2.14 5.19± 2.14 22.12± 2.27 8.20± 1.66
(10,0.3),Q⇠U [0,12] 7.86± 2.03 8.09± 2.01 24.36± 3.20 9.06± 1.60
(10,0.6),Q⇠U [0,12] 6.83± 1.76 6.83± 1.76 22.74± 3.23 8.56± 1.26
(5,0.3),Q⇠U [3,9] 6.78± 1.19 6.94± 1.19 14.75± 1.74 6.77± 1.19
(5,0.6),Q⇠U [3,9] 6.65± 1.17 6.65± 1.17 13.99± 1.26 6.62± 1.17
(10,0.3),Q⇠U [3,9] 7.13± 0.90 7.60± 0.93 15.94± 1.54 6.77± 0.90
(10,0.6),Q⇠U [3,9] 6.26± 1.30 6.26± 1.30 15.85± 1.41 5.87± 1.33

Note: ± indicates the half-width of the 95% confidence interval for the estimated means of each metric.

Table 3 Average Number of Bags Under Different Policies

Parameters (c, �),Q⇠ F Optimal 2-LA DFA Naive

(5,0.3),Q⇠U [0,12] 177.56± 1.52 173.02± 2.13 174.86± 0.00 157.56± 5.05
(5,0.6),Q⇠U [0,12] 194.99± 1.88 194.90± 1.86 189.99± 0.00 173.54± 5.45
(10,0.3),Q⇠U [0,12] 169.52± 3.63 167.72± 3.87 173.39± 0.00 158.86± 6.47
(10,0.6),Q⇠U [0,12] 185.65± 3.22 185.68± 3.22 188.52± 0.00 176.19± 5.14
(5,0.3),Q⇠U [3,9] 173.29± 1.64 170.58± 2.18 174.86± 0.00 169.99± 2.29
(5,0.6),Q⇠U [3,9] 189.62± 0.93 188.97± 1.00 189.99± 0.00 184.08± 1.53
(10,0.3),Q⇠U [3,9] 171.82± 1.73 171.30± 1.74 173.39± 0.00 171.89± 1.76
(10,0.6),Q⇠U [3,9] 187.65± 1.90 187.65± 1.90 188.52± 0.00 187.82± 1.92

Note: ± indicates the half-width of the 95% confidence interval for the estimated means of each metric.

Consistent with the performance bounds derived in Proposition 6 and 8, the DFA policy per-

forms better when the supplementary cost is lower and/or the variance of the surplus is smaller—

both of which reduce the impact of surplus food uncertainty in the objective function. The 2-LA

policy achieves near-optimal performance, particularly when the sensitivity of reputation to new

performance (�) is lower.

System Convergence. Let Q= 6. We plot the trajectories of reputation rt, optimal bag number

n⇤
t = n⇤(rt), and optimal bag value `⇤t = `⇤(rt,Q) in Figure 6.

The left and right columns of Figure 6 represent low and high levels of c/p, respectively. The

numerical results confirm the system convergence with deterministic surplus, as illustrated in

Proposition 9. When the c/p ratio is smaller (left column in Figure 6), the store converges to a

higher reputation, committing to more bags and higher average bag values.

8. Conclusion

As a two-sided platform, Too Good To Go must carefully balance the store’s revenue generation

and consumer satisfaction — two potentially conflicting objectives that are crucial for the plat-

form’s viability, particularly given the inherent uncertainty of surplus foods.

Average in-store waste under different policies
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Numerical Experiments: System Convergence

Left: Low  ratioc/p 30Right: High  ratioc/p
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Figure 6 Trajectories of Reputation, bag Number, and Average bag Value Under the Optimal Policy With

Different Supplementary Costs c2 {2,5}

In this paper, we identify a particular operational challenge faced by stores on the platform:

matching a dynamic demand driven by the store’s rating with an ex post, random supply (i.e., sur-

plus food). We use dynamic programming to examine the store’s operational decisions aimed at

improving (i) store revenue, (ii) consumer satisfaction, and (iii) waste reduction. We demonstrate

that, at optimality, a higher rating encourages the store to distribute more bags while maintaining

a lower average food value per bag. Additionally, stores operating on a make-to-order basis with

lower supplementary costs are encouraged to offer higher average bag values than those with typi-

Reputation trajectory

Bag number trajectory

Average bag value trajectory
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• Optimal Bag Distribution 
One bag type if consumer utility is concave; otherwise up to two types identified via an upper 
concave envelope. 

• Approximation Policies 
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performance guarantees. 

• Steady-State Analysis 
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Future Directions

• End-to-end management/ Information disclosure / Pricing effects /…
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Thank you for your attention!
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Questions and comments are appreciated! 
Email: hansheng.jiang@rotman.utoronto.ca


