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100 GOODITO GO
FOODHAUL

| may become add!ctoooN
#spendthedaywithme #Vlog #nohaetimore
-9

Viral social media influence

-

TooGoodToéo
Whole Foods

L SanJose
31.5K people shared related posts

Melody %

TooGoodToGo - Whole Food§ Surprise Bag
Unboxing! e #toogoodtogo #wholef... more

Source: Tiktok

2 Melbourne
1.2M people shared related posts
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What a fun way to try new food while also
reducing food waste! Lmk if you want... more

Hansheng Jiang (University of Toronto)

5



Surprise Bags

Viral social media influence

Too Good To Go

TOO GOOD TO GO - S CC
FOOD HAUL \ Rie’t !

2.5 — ] * , \¥ Users purchase Surprise Bags filled
- Y with a mix of surplus food items.

We know that food waste varies on a day-
| to-day basis, so this is our way of making
- | TooGoodToGo ‘ = sure retailers have the flexibility to sell
Whole Foods | ‘ L s ¥ :
h ' | genuine surplus - whatever that ends up
being.

® sanJose ' ® Melbourne )
31.5K people shared related posts 1.2M people shared related posts

- f . ot 202 A Surprise Bags are sold at a reduced price

| may become add!CToC ORIV /;*‘ TooGoodToGo - Whole Food$ Surprise Bag = s . \What a fun way to try new food while also
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of the contents’ original retail value,
typically priced at approximately 25 to 50%

of the original retail value. 1)

Source: Tiktok
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Tim Hortons - 246 Bloor
Street West
&) Baked Goods $15.00
0 4.5(80) $4.99

® Pick up: 10:00 PM - 10:45 PM

246 Bloor St W, Toronto, ON M5S

®©
1V4, Canada >
More information about the store

What you could get
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Cookies, Muffins, Bagels, and/or other baked
goods.

Bread & pastries

Ingredients & allergens >
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* Non-stationary demand

o Sales are driven by customer ratings, which are influenced by the
uncertain quantity and quality of surplus food

* Unpredictability

o Amount of surplus foods are unknown until the point of sale,
making it difficult to predict customer satisfaction

* Decision under uncertain supply

o Stores must list available surprise bags 24 hours in advance
without knowing the exact surplus quantity or value

* Allocate content across surprise bags

o The common approach is to evenly distribute surplus items across
all bags, ensuring a similar monetary value. However, this may not
always maximize consumer satisfaction

Hansheng Jiang (University of Toronto) 7



Research Question

Hansheng Jiang (University of Toronto)

8



Research Question

» Backfires of existing heuristic approaches

Hansheng Jiang (University of Toronto)

8



Research Question

» Backfires of existing heuristic approaches

o Cancel reservation ex post — Consumer complaints and penalty by platforms

Hansheng Jiang (University of Toronto) 8



Research Question

» Backfires of existing heuristic approaches
o Cancel reservation ex post — Consumer complaints and penalty by platforms

o Supplement the surplus with regular items from standard sales — High opportunity costs and
additional labor costs

Hansheng Jiang (University of Toronto) 8



Research Question

» Backfires of existing heuristic approaches
o Cancel reservation ex post — Consumer complaints and penalty by platforms

o Supplement the surplus with regular items from standard sales — High opportunity costs and
additional labor costs

From Store View to Platform view



Research Question

» Backfires of existing heuristic approaches
o Cancel reservation ex post — Consumer complaints and penalty by platforms

o Supplement the surplus with regular items from standard sales — High opportunity costs and
additional labor costs

From Store View to Platform view

Revenue from Surprise Bags
Provides stores with salvage value for unsold surplus, essential for the long-term viability of the
TGTG platform.



Research Question

» Backfires of existing heuristic approaches
o Cancel reservation ex post — Consumer complaints and penalty by platforms

o Supplement the surplus with regular items from standard sales — High opportunity costs and
additional labor costs

From Store View to Platform view

Revenue from Surprise Bags
Provides stores with salvage value for unsold surplus, essential for the long-term viability of the
TGTG platform.

Platform's Role
TGTG is developing recommendation systems to help stores strategically manage surplus
inventory and surprise bag design



Research Question

» Backfires of existing heuristic approaches
o Cancel reservation ex post — Consumer complaints and penalty by platforms

o Supplement the surplus with regular items from standard sales — High opportunity costs and
additional labor costs

From Store View to Platform view

Revenue from Surprise Bags

Provides stores with salvage value for unsold surplus, essential for the long-term viability of the
TGTG platform.

Platform's Role

TGTG is developing recommendation systems to help stores strategically manage surplus
inventory and surprise bag design

Balancing Trade-offs
Recommendations need to balance store earnings and consumer satisfaction



Research Question

» Backfires of existing heuristic approaches
o Cancel reservation ex post — Consumer complaints and penalty by platforms

o Supplement the surplus with regular items from standard sales — High opportunity costs and
additional labor costs

From Store View to Platform view

Revenue from Surprise Bags

Provides stores with salvage value for unsold surplus, essential for the long-term viability of the
TGTG platform.

Platform's Role

TGTG is developing recommendation systems to help stores strategically manage surplus
inventory and surprise bag design

Balancing Trade-offs
Recommendations need to balance store earnings and consumer satisfaction



Research Question

Hansheng Jiang (University of Toronto)

9



Research Question

Research Question

Hansheng Jiang (University of Toronto)

9



Research Question

Research Question
How many surprise bags should be offered?

Hansheng Jiang (University of Toronto)

9



Research Question

Research Question
How many surprise bags should be offered?
How much total food should be included in the bags?



Research Question

Research Question
How many surprise bags should be offered?
How much total food should be included in the bags?
How should the food be allocated across each bag?



Research Question

Research Question
How many surprise bags should be offered?
How much total food should be included in the bags?
How should the food be allocated across each bag?

Our Research Contribution
Supports the development of these systems by
exploring optimal bag design strategies that ensure
long-term profitability and satisfaction
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* Key drivers of food waste in the supply chain
o Cosmetic standards: designated channels for selling “ugly” foods

o Expiration date: perishable inventory control, product display strategies, markdown pricing and
promotion, technology-driven innovation to increase traceability (blockchain, Al)

* Traditional channels of surplus foods

o Donation to food bank requires scale of similar products and involved volunteers with
decentralized efforts, which do not scale well

* Innovative surplus food management as of TGTG (New and quickly growing!)

o Focus on clearance: Yang and Yu (2024) show how surplus food sales reduce waste and boost
profits, but may lead to increased consumer-side waste

o Our difference: We explore store reputation and the trade-offs between short-term profits and
long-term reputation building in the context of TGTG
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* Opaque selling

o Research on opaque selling (where consumers cannot fully observe
product attributes) contributes to understanding consumer behavior in
surprise bag sales

 Reputation management

o Reputation is central in our model, as customer satisfaction influences
future demand. Previous research examines the role of ratings and
pricing in shaping reputation

* Positioning of our work

o Our paper is one of the first to examine opaque selling to reduce food
waste, and the first to explore the optimal dynamic design of probabilistic
goods in this context.
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« Bag value x

o Combines quantity, freshness, cosmetic quality, etc.

» Consumer utility v(x)
o Non-linear function (anchored to posted price and paid price)
o Example: Prospect theory (gains/losses asymmetry) — Higher utility for perceived “bargains”

° y(x) is non-decreasing, differentiable, bounded slope

. Allocation distribution ¢( - )

° ¢(x) stands for the proportion (density) of bags with value x

. Population average utility V[¢,( - )]

o0

Vig )] = J V()b (0dx
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Corollary Stage Il decision can be reduced from distribution ¢( - ) to
average bag value £, and £ uniquely determines a conditional optimal
food distribution *( - | ).

n<D(r) £>0

J*(r) = max [p -n+ kg (max _—C(z,”, n, Q)+ pJ* (6V[qb*( O]+ (1 = 5)r)] )]



Solving for ¢p*( - | ©)



Solving for ¢p*( - | ©)

» The conditional optimal food distribution p*( - | £) is the optimal solution to



Solving for ¢p*( - | ©)

» The conditional optimal food distribution p*( - | £) is the optimal solution to

max Vig(x)] = ro v(x)p(x)dx
$(C)R,—R, 0

o0 o0

o(x)dx =1, and j xp(x)dx =7 .

subject to J
0

0



Solving for ¢p*( - | ©)

» The conditional optimal food distribution p*( - | £) is the optimal solution to

max Vig(x)] = ro v(x)p(x)dx
$(C)R,—R, 0

o0 o0

subject to J o(x)dx =1, and j xp(x)dx =7 .
0 0
« Definition: denote the upper concave envelope of consumer utility function v, i.e., the

smallest concave function that is larger than v, by V.



Solving for ¢p*( - | ©)

» The conditional optimal food distribution p*( - | £) is the optimal solution to

o0

max Vig(x)] = J v(x)p(x)dx

¢('):|R+_>|R+ 0

o0 o0

subject to J o(x)dx =1, and j xp(x)dx =7 .
0 0
« Definition: denote the upper concave envelope of consumer utility function v, i.e., the

smallest concave function that is larger than v, by V.

Proposition The optimal solution ¢*( - | £) is supported by either one or
two Dirac points and achieves a population's average utility at

Vig*(- 1)1 = v(©).



Solving for ¢p*( - | ©)

» The conditional optimal food distribution p*( - | £) is the optimal solution to

o0

max Vig(x)] = J v(x)p(x)dx

¢('):|R+_>|R+ 0

o0 o0

subject to J o(x)dx =1, and j xp(x)dx =7 .
0 0
« Definition: denote the upper concave envelope of consumer utility function v, i.e., the

smallest concave function that is larger than v, by V.

Proposition The optimal solution ¢*( - | £) is supported by either one or
two Dirac points and achieves a population's average utility at

Vig*(- 1)1 = v(©).

« When v( - ) is concave, evenly distributing is optimal!
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Example of Non-Concave Utility: From Prospect Theory

- Base utility function v,

Vo) = y% - Ljso — A(=)" - 1,

o ¢ € (0,1) captures diminishing sensitivity, A > 1 captures loss aversion

 Consumers' utility is influenced by two reference points —

) Baked Goods —> 5 =00
° The posted value of the surprise bag contents p,_ —87=5T180) 9499
@—Pick Up: 10:00 PM - 10:45 PM

° The price paid for the surprise bag pp -
» Total utility
v(x) = (1 = @)vy(x — py) + Pvy(x — pp)
° Vy(x — p4) captures the reference effects from posted value p,

° yo(x — pp) captures the reference effects from price paid pp
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Distribution with Non-Concave Utility Function

. When v( - ) is non-concave, (at most) two types of bags are needed!

Consumer utility function v(x) and its upper concave envelope V(x)

— v(x); —— : 0(x) where ¥(x) = v(x); --- :0(x) where v(x) # v(x).

x|

X X1 X2 X3

Ps pa {o X

1>
*
’Q
*

Note. v(x) =v(x) forx € {z} U [x1,x2] U[xs,Z], and 0(x) > v(x) for x € (x,x1) U (z2,z3). Note that x1 > pp and x3 > pa.
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Lookahead Approximation

« Optimize over finite K horizons

ViE(r) = ma(X) p-n+k, ILI)aé({—C(f, n, Q) +,BV;‘11(5\?(L”) +(1 -0} (1 <t<LK),
n<D(r >

V6‘<(r) = (.

. Let #5) = {7 £} denote the K-LA policy

Proposition Under the 1-LA policy (i.e., myopic policy), the optimal bag number
s i'V(r) = D(r) and the optimal bag value is Z‘"(r, 0) = min{x, O/D(r)}.
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Performance Bound of Lookahead Approximation

Proposition The revenue gap between the optimal policy and the K-LA

. T p" prdC
policy is bounded by J*(r) — J&)(r) < TG

 Remark: the performance bound is tighter when:
o> Time discount factor [ is small
o Weight on new consumers' utility in reputation updating o is small
o Number of lookahead periods K is more
o Maximal sensitivity of demand in response to reputation ( is low

° Maximal sensitivity of consumers' utility to food value k is small
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Deterministic Fluid Approximation

 Deterministic fluid approximation policy 7,

» Replaces random Q ~ F with expectation O = E[Q]

o Bellman equation is

J™(r)= max pn— C(,n,Q)+pI™ |50()+ (1 - S)r|
n<D(r),0>0

* Convex relaxation of single-period payoff (McCormick envelope)
C(n, ¢,Q) = c(nf = O)* 2 ¢ [y(n, &) = Q| :=C(n,¢,0)

o Bellman equation is

JM(r) = max pn+ — o |max BIM[SH(E) + (1 = &)r] — C(n, ¢, Q)
n<D(r) >0

* Putting together, the Bellman equation is further reduced to

JMP(ry= max pn-—C(, n, Q)+ pJMP [59(%) + (1 — 5)r]
n<D(r),(>0
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Structure of Relaxed Policy

Proposition n"(r) increases in r and #"°(r) decreases in r. Specifically, if
p > c, then n"°(r) = D(r).

Otherwise, if p < ¢, we have nP(r) = D(r) — [¢£MP(r)D(r) — Q| ", where £MP(r) is

the solution to max pQ + (1 — O)ap + pIMP |59(£) + (1 — S)r| .
£€(0,1]

« Whenp > ¢

o The store maximizes short-term profits by distributing the maximum number of bags, adjusting the
average bag value based on leftovers

« Whenp <c

o The store reduces the number of bags to optimize costs, using the available leftover food more
efficiently
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Performance Bound of Relaxed Policy

Proposition It holds that J™ < J*(r) < JY(r) < JMP(r), and

2
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Performance Bound of Relaxed Policy

Proposition It holds that J™ < J*(r) < JY(r) < JMP(r), and

2
JH(r) = J7(r) < TP = J(r) < 5 iﬂ | lg * (\/ D(r) - \/Q/f> ]

 Remark: the performance bound is tighter when
> Smaller time discount factor f
o Lower supplementary costs ¢
o Smaller standard deviation o

o Aligning O with xD(r)



Steady State Analysis

Hansheng Jiang (University of Toronto) 26



Steady State Analysis
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Steady State Analysis

Proposition Under the optimal policy with deterministic leftover, the steady-
state bag value converges to £*, corresponding to the store's steady-state

reputation r* = V(£*) and bag number n* = D(r*) = D[V(£*)]. The
steady-state bag value is the unique solution to

cD[V(™)] povi(c™)

(p — D) 1=p1=6)

* Implication: Stores do not need to maintain a perfect rating

* Each store reaches a different long-term reputation level, with key influencing factors:
o Cost structure
o Consumer preferences
o Demand dynamics

o Reputation update mechanism
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* Experiment setup
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o We assume a simple
logstic utility function
with one reference point,
given by

v(x) =

1 + ¢—10:—0.5)"

o |ts upper concave
envelope can be

expressed as
1.25x
V(x) = 1
1 4+ ¢—10(x—0.5)

if x € [0,0.676];

if x € (0.676,1].
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Policy Comparison: Revenue

. We compare four policies: i) the optimal policy 7z*, ii) the 2-LA policy 7', iii) the
deterministic approximation policy 7z, and iv) the naive policy 7y

Average revenues under different policies

Parameters (c,9),Q ~ F Optimal 2-LA DFA Naive
(5,0.3),Q ~U[0,12 844.124+13.91 841.82+14.39 793.92+10.44 787.78 +25.27
(5,0.6),Q ~U[0,12 931.70+14.03 921.89+14.07 870.41+9.04  867.68 +27.23
(10,0.3),Q ~U|0,12 827.594+21.78 826.44+21.89 796.61+£23.44  794.27 4+ 32.37
(10,0.6),Q ~U|0,12 910.14+18.10  900.15+18.10 858.10+19.05 880.94 + 25.72

(5,0.3),Q ~U|[3,9 850.48 +£10.77 849.394+11.20 829.41+7.32  849.96+11.43
(5,0.6),Q ~U|3,9 921.944+7.18  891.93+£7.20  916.91+5.87  890.39+7.64
(10,0.3),Q ~U|[3,9 856.734+8.80  855.63+£8.76  801.22+10.99  859.46 + 8.78
(10,0.6),Q ~U|[3,9 936.56 +9.60  926.56+£9.60  889.64+13.54  909.09+9.61

Note: + 1ndicates the half-width of the 95% confidence interval for the estimated means of each metric.




Policy Comparison: Waste

. We compare four policies: i) the optimal policy 7z*, ii) the 2-LA policy 7', iii) the
deterministic approximation policy 7z, and iv) the naive policy 7y

Average Iin-store waste under different policies

Parameters (c,0),Q ~ F Optimal 2-LA DFA Naive

(5,0.3),Q ~U[0,12 6.444+2.07 6.59+2.08 22.82+272 8.154+1.66
(5,0.6),Q ~U[0,12 5.174+2.14  5.194+2.14 22.12+227 8.20+1.66
(10,0.3),Q ~U[0,12]  7.86+2.03 8.094+2.01 24.36+3.20 9.06 £ 1.60
(10,0.6),Q ~UJ[0,12]  6.83+1.76 6.83+1.76 22.74+3.23 8.56+1.26

(5,0.3),Q ~UI3,9 6.784+1.19 6.94+1.19 14.75+1.74 6.77+1.19

(5,0.6),Q ~U[3,9 6.65+1.17 6.65+1.17 13.99+1.26 6.6241.17
(10,0.3),Q ~U[3,9]  7.134+0.90 7.60+£0.93 15944154 6.77+0.90
(10,0.6),Q ~U[3,9]  6.26+1.30 6.26+1.30 1585+1.41 5.87+1.33

Note: &+ indicates the half-width of the 95% confidence interval for the estimated means of each metric.




Numerical Experiments: System Convergence
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Summary
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Future Directions

* End-to-end management/ Information disclosure / Pricing effects /...
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Thank you for your attention!

Questions and comments are appreciated!
—mail: hansheng.jlang@rotman.utoronto.ca
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