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Vehicle Sharing Networks

Features 
• On-demand: customers reserve a vehicle when they 

want

• One-way: rent from one location and return the vehicle 

to any other location in the service network

• Examples: bikes, scooters, cars

Benefits 
• Increased flexibility and convenience for customers

• Competitive transportation costs for customers

• Environmental friendly

• May reduce overall vehicle ownerships and produce less 

carbon emissions

• Help to promote adoption of EVs with cleaner energy

Source: Generated by Midjourney
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Emerging Platforms and Programs

Source: gigcarshare.com

“GIG Car Share: Carsharing service 
in parts of the San Francisco Bay 
Area, Sacramento, and Seattle, 
created by A3 Ventures 

The company operates a fleet of 
Toyota Prius Hybrid vehicles and all-
electric Chevrolet Bolts. It offers 
one-way point-to-point rentals.”

Nationwide community carsharing 
program addressing lack of public 
transportation and providing cleaner 
transportation option for low-income 
community

Source: forthmobility.org/community-carsharing
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Matching Supply with Demand in Network

Location i

Location j

Location k

Demand di

Demand dj

Demand dkInventory xk

Inventory xi

Inventory xj

Illustration of 3 locations in a -location service regionn
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Inventory Dynamics as MDP
Markov Decision Process

At period t = 1,2,…
I) Service provider reviews the current inventory level    (State)xt

II) Service provider makes a decision on the target repositioning inventory level    (Policy)yt
• Repositioning policy:

III) Rental trips by customers are realized, and inventory level moves to a new level xt+1
• Rental trips

•  Censored demand  min(dt, yt)
•  Origin-to-destination matrix for vehicles returning  Pt

• State transition: 

                      xt+1 = (yt − dt)+ + PT min(yt, dt)

xt = (xt,1, …, xt,n) yt = (yt,1, …, yt,n)
policy π
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    Total cost   =    Repositioning cost      +      Lost sales cost 


π
Cπ

t Mπ
t Lπ

t

Lt = ∑
i

∑
j

lij ⋅ Pij(di − yi)+
Mt = min

n

∑
i=1

n

∑
j=1

cij ⋅ ξij

s.t.
n

∑
i=1

ξij −
n

∑
k=1

ξjk = yt,j − xt,j

Obtained by solving 
minimum cost flow 

problem
 origin-to-destination probabilityPij

Long-run average cost of policy 


                         

π

λπ = lim
T→∞

1
T

T

∑
t=1

%[Cπ
t ]
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Optimal Policy

                                                     

• Optimal policy is computationally expensive in general even when the demand distribution 
is known or fully observed

min
π

1
T

T

∑
t=1

%[Cπ
t ] , T → ∞

Base-Stock Repositioning Policy
• Definition: Repositioning to base-stock level  regardless of the current 

state 
S = (S1, …, Sn)

xt

Best Base-Stock Repositioning Policy

                                         S⋆ ∈ arg min
S∈Δn−1

lim sup
T→∞

1
T

T

∑
t=1

%S[Ct]
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Asymptotic Optimality of Base-Stock Policy

Theorem (informal) The ratio of the optimal base-stock repositioning 
policy’s long-run average cost to the optimal repositioning policy’s long-
run average cost approaches  when the ratio of unit lost sales cost to 
unit repositioning cost  .

1
lij /cij → ∞

Theorem (informal) The ratio of the optimal base-stock repositioning 
policy’s long-run average cost to the optimal repositioning policy’s long-
run average cost approaches  when the number of locations  in the 
network goes to  .

1 n
∞

Intui!on
Repositioning can be done in bulk; Minimizing user dissatisfication; Need for market growth

Intui!on
Lost sales cost occurred individually at each location — the opposite of “risk pooling”
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Learning Best Base-Stock Policy

Performance Metric The regret compared with the base-stock repositioning policy incurred 
by algorithm  with optimal base-stock level 


                                        

A S⋆

Regret(A, T) =
T

∑
t=1

%[CA
t ] −

T

∑
t=1

%[CS⋆
t ]

Bandit Learning Perspective  
• Treat each base-stock repositioning policy as an arm

• The reward of each arm is negative long-run average cost

Difficulties  
• Only censored demand is known

• Reward is not immediately accessible and only partially observed

• Randomness in both demand arriving and vehicle returning

• Curse of dimensionality in a network with multiple locations
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Learning While Repositioning

Base Stock 
Level S1

Base Stock 
Level S2

Base Stock 
Level S3

…… Base Stock 
Level ?

Immediate cost

CS1

Immediate cost

CS2

Which policy to experiment with 
next?

Compared with classical MAB literature:

demand is censored


immediate single period cots  long run average cost

potential policies are not finite


….

≠
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Lipschitz Bandits-based Repositioning
LipBR Algorithm

Theorem (informal) The regret of the LipBR algorithm against the optimal base-stock 
policy is upper bounded by  .Õ(T n

n + 1)

Algori"m Design Idea
• Establish Lipschitz property of the long-run average cost wrt policy 

• Discretize the policy space  by covering, and bound the covering number by  for 

accuracy  

• Concentration inequalities of single period costs versus long-run average costs 

• Monitor pseudo costs  in regret definition to address unobservable lost sales cost 

• Regret 

Δn−1 O(ϵ1−n)
ϵ

C̃
≈ KT + Kϵ, where K = O(ϵ1−n) and ϵ = O(T−1/(n+1))

Can we bypass the curse of dimensionality and remove the power dependence on ?n
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Generalization bound Uniform convergence over Δn−1
Two Reformulations Tackling NonConvexity
• Mixed integer linear programming (MILP) formulation
• Linear programming (LP) formulation under additional cost assumptions

min
S∈Δn−1

1
T

T

∑
t=1

C̃S

Theorem (informal) Under demand independence assumption, the one-time learning 
algorithm can achieve  regret.Õ(T 2

3)

Theorem (informal) With uncensored demand data, the dynamic learning algorithm can 
achieve  regret.Õ(T 1

2)
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One time learning Õ(T 2
3)

1. Explore for  time periods by placing 
sufficient inventory in  locations 
respectively

nT2/3

n

2. Solve the offline problem using data 
collected in  time periodsnT2/3

3. Exploit the policy learned from the offline 
problem

Dynamic learning  
(if demand is uncensored) 

At each period, solve the offline problem 
and update the policy


Õ(T 1
2)
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Online Learning with Optimal Regret
Algori"m Design

At iteration 

1. Consider the dual optimal solution  to the constraints 

2.   is a sub-gradient 

3. Gradient descent 

4. Project  onto  to obtain 

t
λt,i wt,i ≤ min{dt,i, Si}

gt,i = λi1{min{dt,i,St,i}=St,i}

S̃t = St − 1
t
gt

S̃t Δn−1 St+1
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Online Learning with Optimal Regret
Algori"m Design

At iteration 

1. Consider the dual optimal solution  to the constraints 

2.   is a sub-gradient 

3. Gradient descent 

4. Project  onto  to obtain 

t
λt,i wt,i ≤ min{dt,i, Si}

gt,i = λi1{min{dt,i,St,i}=St,i}

S̃t = St − 1
t
gt

S̃t Δn−1 St+1

Theorem (informal) The online stochastic gradient OSG based algorithm achieves a regret 
of  and this rate even holds for adversarial data. This rate matches the theoretical 
lower bound.

Õ(T 1
2)
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Summary
Efficient inventory monitoring is critical for successful operations of vehicle sharing systems

We establish asymptotic optimality of base-stock repositioning policy and prove near 
optimal regret bound of learning

Learning and optimizing in high dimension with censored data is particularly challenging

More Extensions
• Incorporating other controls such as pricing and special incentive programs

• More practical challenges in inventory monitoring


• Seasonal or non-stationary demand

• New infrastructure such as charging stations
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Thanks for your attention!
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