Learning While Repositioning in On-Demand Inventory Sharing Networks

Hansheng Jiang (University of Toronto)

Joint work with Shunan Jiang (UC Berkeley), Max Shen (HKU), and Chunlin Sun (Stanford)

POMS-HK 2024

Features

- On-demand: customers reserve a vehicle when they want
- One-way: rent from one location and return the vehicle to any other location in the service network
- Examples: bikes, scooters, cars

Features

- On-demand: customers reserve a vehicle when they want
- One-way: rent from one location and return the vehicle to any other location in the service network
- Examples: bikes, scooters, cars

Source: Generated by Midjourney

Features

- On-demand: customers reserve a vehicle when they want
- One-way: rent from one location and return the vehicle to any other location in the service network
- Examples: bikes, scooters, cars

Benefits

- Increased flexibility and convenience for customers
- Competitive transportation costs for customers
- Environmental friendly
 - May reduce overall vehicle ownerships and produce less carbon emissions
 - Help to promote adoption of EVs with cleaner energy

Source: Generated by Midjourney

Emerging Platforms and Programs

Emerging Platforms and Programs

Source: gigcarshare.com

"GIG Car Share: Carsharing service in parts of the San Francisco Bay Area, Sacramento, and Seattle, created by A3 Ventures

The company operates a fleet of Toyota Prius Hybrid vehicles and allelectric Chevrolet Bolts. It offers one-way point-to-point rentals."

Emerging Platforms and Programs

Source: gigcarshare.com

"GIG Car Share: Carsharing service in parts of the San Francisco Bay Area, Sacramento, and Seattle, created by A3 Ventures

The company operates a fleet of Toyota Prius Hybrid vehicles and allelectric Chevrolet Bolts. It offers one-way point-to-point rentals."

The Affordable Mobility Platform (AMP)

The **Affordable Mobility Platform (AMP)** is a nationwide community carsharing program providing electric vehicles to affordable housing locations.

Forth is working with local partners including utilities and community-based organizations in eight states across the U.S. with the goal of increasing access to clean transportation by making low-cost EVs available to underserved communities.

The first locations are: **Oregon** (Portland), **Washington State** (Seattle), **North Carolina** (Charlotte), **Missouri** (St. Louis), **Michigan** (Detroit, Kalamazoo, Ann Arbor), **Idaho** (Boise), **Nevada** (Las Vegas), and **New Mexico** (Albuquerque, Santa Fe).

AMP is funded by the U.S. Department of Energy (DOE)

Source: forthmobility.org/community-carsharing

Nationwide community carsharing program addressing lack of public transportation and providing cleaner transportation option for low-income community

Motivation

- Service region design
- Fleet sizing
- Trip pricing
- Infrastructure planning

.

Motivation

- Service region design
- Fleet sizing
- Trip pricing

.

Infrastructure planning

Focus of this talk: Inventory Repositioning

- Lost demand due to lack of vehicles in high utilization zone
- Low utilization zone with oversupply of vehicles

Motivation

- Service region design
- Fleet sizing
- Trip pricing

.

Infrastructure planning

Focus of this talk: Inventory Repositioning

- Lost demand due to lack of vehicles in high utilization zone
- Low utilization zone with oversupply of vehicles

Motivation

Screenshot of GIG Car Share App

- Service region design
- Fleet sizing
- Trip pricing

.

Infrastructure planning

Focus of this talk: Inventory Repositioning

- Lost demand due to lack of vehicles in high utilization zone
- Low utilization zone with oversupply of vehicles

Motivation

Screenshot of GIG Car Share App

Matching Supply with Demand in Network

Matching Supply with Demand in Network

Illustration of 3 locations in a *n*-location service region

At period t = 1, 2, ...

At period t = 1, 2, ...

I) Service provider reviews the current inventory level x_t (State)

Inventory Dynamics as MDP

Markov Decision Process

- At period t = 1, 2, ...
 - I) Service provider reviews the current inventory level x_t (State)
 - II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)

Inventory Dynamics as MDP

Markov Decision Process

At period $t = 1, 2, \dots$

- I) Service provider reviews the current inventory level x_t (State)
- II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)
 - Repositioning policy:

At period t = 1, 2, ...

- I) Service provider reviews the current inventory level x_t (State)
- II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)
 - Repositioning policy:

$$x_t = (x_{t,1}, ..., x_{t,n}) \xrightarrow{\text{policy } \pi} y_t = (y_{t,1}, ..., y_{t,n})$$

At period t = 1, 2, ...

- I) Service provider reviews the current inventory level x_t (State)
- II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)
 - Repositioning policy:

$$x_t = (x_{t,1}, ..., x_{t,n}) \xrightarrow{\text{policy } \pi} y_t = (y_{t,1}, ..., y_{t,n})$$

At period t = 1, 2, ...

- I) Service provider reviews the current inventory level x_t (State)
- II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)
 - Repositioning policy:

$$\mathbf{x}_{t} = (x_{t,1}, \dots, x_{t,n}) \xrightarrow{\text{policy } \pi} \mathbf{y}_{t} = (y_{t,1}, \dots, y_{t,n})$$

At period t = 1, 2, ...

- I) Service provider reviews the current inventory level x_t (State)
- II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)
 - Repositioning policy:

$$\mathbf{x}_{t} = (x_{t,1}, \dots, x_{t,n}) \xrightarrow{\text{policy } \pi} \mathbf{y}_{t} = (y_{t,1}, \dots, y_{t,n})$$

• Rental trips

At period t = 1, 2, ...

- I) Service provider reviews the current inventory level x_t (State)
- II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)
 - Repositioning policy:

$$\mathbf{x}_{t} = (x_{t,1}, \dots, x_{t,n}) \xrightarrow{\text{policy } \pi} \mathbf{y}_{t} = (y_{t,1}, \dots, y_{t,n})$$

- Rental trips
 - Censored demand $\min(d_t, y_t)$

At period t = 1, 2, ...

- I) Service provider reviews the current inventory level x_t (State)
- II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)
 - Repositioning policy: $\mathbf{x}_t = (x_{t,1}, \dots, x_{t,n})$ policy

- Rental trips
 - Censored demand $\min(d_t, y_t)$
 - Origin-to-destination matrix for vehicles returning P_t \bullet

$$\xrightarrow{\pi} \quad \mathbf{y}_t = (y_{t,1}, \dots, y_{t,n})$$

At period $t = 1, 2, \dots$

- I) Service provider reviews the current inventory level x_t (State)
- II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)
 - Repositioning policy: $\mathbf{x}_t = (x_{t,1}, \dots, x_{t,n})$ policy

- Rental trips
 - Censored demand $\min(d_t, y_t)$
 - Origin-to-destination matrix for vehicles returning P_t ullet
- State transition:

$$\xrightarrow{\pi} \quad \mathbf{y}_t = (y_{t,1}, \dots, y_{t,n})$$

At period $t = 1, 2, \dots$

- I) Service provider reviews the current inventory level x_t (State)
- II) Service provider makes a decision on the target repositioning inventory level y_t (Policy)
 - Repositioning policy: $\mathbf{x}_t = (x_{t,1}, \dots, x_{t,n})$ policy

- Rental trips
 - Censored demand $\min(d_t, y_t)$
 - Origin-to-destination matrix for vehicles returning P_t ullet
- State transition:

$$\boldsymbol{x}_{t+1} = (\boldsymbol{y}_t - \boldsymbol{d}_t)^+ + \boldsymbol{P}^T \,\mathrm{m}$$

$$\xrightarrow{\pi} \quad \mathbf{y}_t = (y_{t,1}, \dots, y_{t,n})$$

III) Rental trips by customers are realized, and inventory level moves to a new level x_{t+1}

 $\min(\mathbf{y}_t, \mathbf{d}_t)$

Objective

Single-period cost of policy π Total cost C_t^{π} = Repositioning cost M_t^{π} + Lost sales cost L_t^{π}

Objective

Objective

Long-run average cost of policy π

Objective

Designing Repositioning Policy

Designing Repositioning Policy

Optimal Policy

Designing Repositioning Policy

Optimal Policy

- is known or fully observed

 $\min_{\pi} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[C_t^{\pi}], T \to \infty$

Optimal policy is computationally expensive in general even when the demand distribution

Optimal Policy

- is known or fully observed

 $\min_{\pi} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[C_t^{\pi}], T \to \infty$

Optimal policy is computationally expensive in general even when the demand distribution

Optimal Policy

- $\frac{1}{\pi} \frac{1}{T}$
- is known or fully observed

Base-Stock Repositioning Policy

state x_t

$$\sum_{t=1}^{T} \mathbb{E}[C_t^{\pi}], T \to \infty$$

Optimal policy is computationally expensive in general even when the demand distribution

• **Definition:** Repositioning to base-stock level $S = (S_1, ..., S_n)$ regardless of the current

Optimal Policy

- $\frac{1}{\pi} \frac{1}{T}$
- is known or fully observed

Base-Stock Repositioning Policy

state x_{t}

Best Base-Stock Repositioning Policy

$$\sum_{t=1}^{T} \mathbb{E}[C_t^{\pi}], T \to \infty$$

Optimal policy is computationally expensive in general even when the demand distribution

• **Definition:** Repositioning to base-stock level $S = (S_1, \ldots, S_n)$ regardless of the current

Optimal Policy

- $\frac{1}{\pi} \frac{1}{T}$
- is known or fully observed

Base-Stock Repositioning Policy

state x_{t}

Best Base-Stock Repositioning Policy

$$\mathbf{S}^{\star} \in \arg \min_{\mathbf{S} \in \Delta_{n-1}} \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}^{\mathbf{S}}[C_t]$$

$$\sum_{t=1}^{T} \mathbb{E}[C_t^{\pi}], T \to \infty$$

Optimal policy is computationally expensive in general even when the demand distribution

• **Definition:** Repositioning to base-stock level $S = (S_1, \ldots, S_n)$ regardless of the current

Theorem (informal) The ratio of the optimal base-stock repositioning unit repositioning cost $l_{ij}/c_{ij} \rightarrow \infty$.

Theorem (informal) The ratio of the optimal base-stock repositioning unit repositioning cost $l_{ij}/c_{ij} \rightarrow \infty$.

Intuítíon

Repositioning can be done in bulk; Minimizing user dissatisfication; Need for market growth

Theorem (informal) The ratio of the optimal base-stock repositioning unit repositioning cost $l_{ij}/c_{ij} \rightarrow \infty$.

Intuítíon

Repositioning can be done in bulk; Minimizing user dissatisfication; Need for market growth

Theorem (informal) The ratio of the optimal base-stock repositioning policy's long-run average cost to the optimal repositioning policy's longrun average cost approaches 1 when the number of locations n in the network goes to ∞ .

Theorem (informal) The ratio of the optimal base-stock repositioning unit repositioning cost $l_{ij}/c_{ij} \rightarrow \infty$.

Intuítíon

Repositioning can be done in bulk; Minimizing user dissatisfication; Need for market growth

Theorem (informal) The ratio of the optimal base-stock repositioning policy's long-run average cost to the optimal repositioning policy's longrun average cost approaches 1 when the number of locations n in the network goes to ∞ .

Intuítíon

Lost sales cost occurred individually at each location — the opposite of "risk pooling"

Performance Metric The regret compared with the base-stock repositioning policy incurred by algorithm A with optimal base-stock level S^{\star}

Regret(A, T) = $\sum_{t=1}^{T} \mathbb{E}[C_t^A] - \sum_{t=1}^{T} \mathbb{E}[C_t^{S^*}]$ t=1 t=1

Performance Metric The regret compared with the base-stock repositioning policy incurred by algorithm A with optimal base-stock level S^{\star}

$$\operatorname{Regret}(A, T) = \sum_{t=1}^{T} \mathbb{E}[C_t^A] - \sum_{t=1}^{T} \mathbb{E}[C_t^{S^*}]$$

Bandit Learning Perspective

- Treat each base-stock repositioning policy as an arm
- The reward of each arm is negative long-run average cost

cy as an arm -run average cos

Performance Metric The regret compared with the base-stock repositioning policy incurred by algorithm A with optimal base-stock level S^{\star}

$$\operatorname{Regret}(A, T) = \sum_{t=1}^{T} \mathbb{E}[C_t^A] - \sum_{t=1}^{T} \mathbb{E}[C_t^{S^*}]$$

Bandit Learning Perspective

- Treat each base-stock repositioning policy as an arm
- The reward of each arm is negative long-run average cost

Difficulties

- Only censored demand is known
- Reward is not immediately accessible and only partially observed
- Randomness in both demand arriving and vehicle returning
- Curse of dimensionality in a network with multiple locations

cy as an arm -run average cost

nd only partially observed nd vehicle returning h multiple locations

Learning While Repositioning

Base Stock Level S_3

.....

Base Stock Level ?

Learning While Repositioning

Learning While Repositioning

Compared with classical MAB literature: demand is censored immediate single period cots \neq long run average cost potential policies are not finite

. . . .

LipBR Algorithm

LipBR Algorithm

Algoríthm Desígn Idea

- Establish Lipschitz property of the long-run average cost wrt policy
- Discretize the policy space Δ_{n-1} by covering, and bound the covering number by $O(\epsilon^{1-n})$ for accuracy ϵ
- Concentration inequalities of single period costs versus long-run average costs
- Monitor pseudo costs $ilde{C}$ in regret definition to address unobservable lost sales cost
- Regret $\approx \sqrt{KT} + K\epsilon$, where $K = O(\epsilon^{1-n})$ and $\epsilon = O(T^{-1/(n+1)})$

LipBR Algorithm

Algorithm Design Idea

- Establish Lipschitz property of the long-run average cost wrt policy
- Discretize the policy space Δ_{n-1} by covering, and bound the covering number by $O(\epsilon^{1-n})$ for accuracy ϵ
- Concentration inequalities of single period costs versus long-run average costs
- Monitor pseudo costs \tilde{C} in regret definition to address unobservable lost sales cost
- Regret $\approx \sqrt{KT} + K\epsilon$, where $K = O(\epsilon^{1-n})$ and $\epsilon = O(T^{-1/(n+1)})$

policy is upper bounded by $\tilde{O}(T^{\frac{n}{n+1}})$.

Theorem (informal) The regret of the **LipBR** algorithm against the optimal base-stock

LipBR Algorithm

Algorithm Design Idea

- Establish Lipschitz property of the long-run average cost wrt policy
- Discretize the policy space Δ_{n-1} by covering, and bound the covering number by $O(\epsilon^{1-n})$ for accuracy ϵ
- Concentration inequalities of single period costs versus long-run average costs
- Monitor pseudo costs \tilde{C} in regret definition to address unobservable lost sales cost
- Regret $\approx \sqrt{KT} + K\epsilon$, where $K = O(\epsilon^{1-n})$ and $\epsilon = O(T^{-1/(n+1)})$

policy is upper bounded by $\tilde{O}(T^{\frac{n}{n+1}})$.

Theorem (informal) The regret of the **LipBR** algorithm against the optimal base-stock

Can we bypass the curse of dimensionality and remove the power dependence on n?

Offline Optimization Problem

Offline Optimization Problem

Offline Optimization Problem

Generalization bound Uniform convergence over Δ_{n-1}

Offline Optimization Problem

Generalization bound Uniform convergence over Δ_{n-1}

Two Reformulations Tackling NonConvexity

Offline Optimization Problem

Generalization bound Uniform convergence over Δ_{n-1}

Two Reformulations Tackling NonConvexity

Mixed integer linear programming (MILP) formulation

Offline Optimization Problem

Generalization bound Uniform convergence over Δ_{n-1}

Two Reformulations Tackling NonConvexity

- Mixed integer linear programming (MILP) formulation
- Linear programming (LP) formulation under additional cost assumptions

Offline Optimization Problem

Generalization bound Uniform convergence over Δ_{n-1}

Two Reformulations Tackling NonConvexity

- Mixed integer linear programming (MILP) formulation
- Linear programming (LP) formulation under additional cost assumptions

Offline Optimization Problem

Generalization bound Uniform convergence over Δ_{n-1}

Two Reformulations Tackling NonConvexity

- Mixed integer linear programming (MILP) formulation
- Linear programming (LP) formulation under additional cost assumptions

Theorem (informal) Under demand independence assumption, the one-time learning algorithm can achieve $\tilde{O}(T^{\frac{2}{3}})$ regret.

Offline Optimization Problem

Generalization bound Uniform convergence over Δ_{n-1}

Two Reformulations Tackling NonConvexity

- Mixed integer linear programming (MILP) formulation
- Linear programming (LP) formulation under additional cost assumptions

Theorem (informal) Under demand independence assumption, the one-time learning algorithm can achieve $\tilde{O}(T^{\frac{2}{3}})$ regret.

Theorem (informal) With uncensored demand data, the dynamic learning algorithm can achieve $\tilde{O}(T^{\frac{1}{2}})$ regret.

Regret Analysis of Offline-Based Algorithm

Regret Analysis of Offline-Based Algorithm

Concentration Inequality With probability at least $1 - \frac{1}{T^2}$, it holds that $\sup_{\mathbf{S} \in \Delta_{n-1}} \left| \frac{1}{t} \sum_{s=1}^{t} \widetilde{C}_{s}^{\mathbf{S}} - \mathbb{E}[\widetilde{C}_{1}^{\mathbf{S}}] \right|$

$$\leq 6n^3 \left(\max_{i,j} c_{ij} + \max_{i,j} l_{ij} \right) \cdot \frac{\sqrt{\log T}}{\sqrt{t}}$$

Regret Analysis of Offline-Based Algorithm

$$\leq 6n^3 \left(\max_{i,j} c_{ij} + \max_{i,j} l_{ij} \right) \cdot \frac{\sqrt{\log T}}{\sqrt{t}}$$

Concentration Inequality With probability at least $1 - \frac{1}{T^2}$, it holds that $\sup_{\mathbf{S} \in \Delta_{n-1}} \left| \frac{1}{t} \sum_{s=1}^{t} \widetilde{C}_{s}^{\mathbf{S}} - \mathbb{E}[\widetilde{C}_{1}^{\mathbf{S}}] \right|$

One time learning $\tilde{O}(T^{\frac{2}{3}})$

1. Explore for $nT^{2/3}$ time periods by placing sufficient inventory in *n* locations respectively

$$\leq 6n^3 \left(\max_{i,j} c_{ij} + \max_{i,j} l_{ij} \right) \cdot \frac{\sqrt{\log T}}{\sqrt{t}}$$

Concentration Inequality With probability at least $1 - \frac{1}{T^2}$, it holds that $\sup_{\mathbf{S} \in \Delta_{n-1}} \left| \frac{1}{t} \sum_{s=1}^{t} \widetilde{C}_{s}^{\mathbf{S}} - \mathbb{E}[\widetilde{C}_{1}^{\mathbf{S}}] \right|$

One time learning $\tilde{O}(T^{\frac{2}{3}})$

- 1. Explore for $nT^{2/3}$ time periods by placing sufficient inventory in *n* locations respectively
- 2. Solve the offline problem using data collected in $nT^{2/3}$ time periods

$$\leq 6n^3 \left(\max_{i,j} c_{ij} + \max_{i,j} l_{ij} \right) \cdot \frac{\sqrt{\log T}}{\sqrt{t}}$$

Concentration Inequality With probability at least $1 - \frac{1}{T^2}$, it holds that $\sup_{\mathbf{S} \in \Delta_{n-1}} \left| \frac{1}{t} \sum_{s=1}^{t} \widetilde{C}_{s}^{\mathbf{S}} - \mathbb{E}[\widetilde{C}_{1}^{\mathbf{S}}] \right|$

One time learning $\tilde{O}(T^{\frac{2}{3}})$

- 1. Explore for $nT^{2/3}$ time periods by placing sufficient inventory in *n* locations respectively
- 2. Solve the offline problem using data collected in $nT^{2/3}$ time periods
- 3. Exploit the policy learned from the offline problem

$$\leq 6n^3 \left(\max_{i,j} c_{ij} + \max_{i,j} l_{ij} \right) \cdot \frac{\sqrt{\log T}}{\sqrt{t}}$$

Concentration Inequality With probability at least $1 - \frac{1}{T^2}$, it holds that $\sup_{\mathbf{S}\in\Delta_{n-1}} \left| \frac{1}{t} \sum_{s=1}^{t} \widetilde{C}_{s}^{\mathbf{S}} - \mathbb{E}[\widetilde{C}_{1}^{\mathbf{S}}] \right| \leq |\mathbf{S}| |\mathbf{S}| |\mathbf{S}| |\mathbf{S}| |\mathbf{S}| |\mathbf{S}| |\mathbf{S}| |\mathbf{S}| |\mathbf{S}| |\mathbf{S}|$

One time learning $\tilde{O}(T^{\frac{2}{3}})$

- 1. Explore for $nT^{2/3}$ time periods by placing sufficient inventory in *n* locations respectively
- 2. Solve the offline problem using data collected in $nT^{2/3}$ time periods
- 3. Exploit the policy learned from the offline problem

$$\leq 6n^3 \left(\max_{i,j} c_{ij} + \max_{i,j} l_{ij} \right) \cdot \frac{\sqrt{\log T}}{\sqrt{t}}$$

Dynamic learning $\tilde{O}(T^{\frac{1}{2}})$ (if demand is uncensored)

• At each period, solve the offline problem and update the policy

Online Learning with Optimal Regret

Algoríthm Desígn

At iteration *t*

1. Consider the dual optimal solution $\lambda_{t,i}$ to the constraints $w_{t,i} \leq \min\{d_{t,i}, S_i\}$

2. $g_{t,i} = \lambda_i \mathbf{1}_{\{\min\{d_{t,i}, S_{t,i}\} = S_{t,i}\}}$ is a sub-gradient

- 3. Gradient descent $\widetilde{\mathbf{S}}_t = \mathbf{S}_t \frac{1}{\sqrt{t}}\mathbf{g}_t$
- 4. Project $\widetilde{\mathbf{S}}_t$ onto Δ_{n-1} to obtain \mathbf{S}_{t+1}

Online Learning with Optimal Regret

Algoríthm Desígn

At iteration *t*

- 1. Consider the dual optimal solution $\lambda_{t,i}$ to the constraints $w_{t,i} \leq \min\{d_{t,i}, S_i\}$
- 2. $g_{t,i} = \lambda_i \mathbf{1}_{\{\min\{d_{t,i}, S_{t,i}\} = S_{t,i}\}}$ is a sub-gradient
- 3. Gradient descent $\widetilde{\mathbf{S}}_t = \mathbf{S}_t \frac{1}{\sqrt{t}}\mathbf{g}_t$
- 4. Project $\widetilde{\mathbf{S}}_t$ onto Δ_{n-1} to obtain \mathbf{S}_{t+1}

lower bound.

Theorem (informal) The online stochastic gradient **OSG** based algorithm achieves a regret of $\tilde{O}(T^{\frac{1}{2}})$ and this rate even holds for adversarial data. This rate matches the theoretical

Learning and optimizing in high dimension with censored data is particularly challenging

Efficient inventory monitoring is critical for successful operations of vehicle sharing systems

Learning and optimizing in high dimension with censored data is particularly challenging

Efficient inventory monitoring is critical for successful operations of vehicle sharing systems

Efficient inventory monitoring is critical for successful operations of vehicle sharing systems

We establish asymptotic optimality of base-stock repositioning policy and prove near optimal regret bound of learning

Learning and optimizing in high dimension with censored data is particularly challenging

More Extensions

- Incorporating other controls such as pricing and special incentive programs
- More practical challenges in inventory monitoring
 - Seasonal or non-stationary demand
 - New infrastructure such as charging stations

Thanks for your attention!

Contact: hansheng.jiang@utoronto.ca