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Background
Mixture models are useful for analysis in heterogeneous populations
Mixture of linear regressions (MLR) is a popular mixture model and has
a long history (Quandt, 1958)
MLR is also known as the Hierarchical Mixture of Experts model (Jordan
and Jacobs, 1994) in the machine learning community

Applications
Medicine and pharmacokinetics (Lai and Shih, 2003)
Health care (Deb and Holmes, 2000)
Marketing and business (Wedel and Kamakura, 2012)
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The Mixture of Linear Regressions (MLR) Model

MLR model with unknown mixing probability measure G∗

Yi = xT

i βi + Zi with Z1, . . . , Zn
i.i.d∼ N(0, σ2)

where σ > 0 and
β1, . . . , βn

i.i.d∼ G∗

for an unknown probability measure G∗ on Rp, and G∗ is independent of
Z1, . . . , Zn

Problem statement
Given data (x1, y1), . . . , (xn, yn)
with xi ∈ Rp and yi ∈ R, we want
to nonparametrically estimate G∗

Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 5
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Related Work

Gaussian location mixture

Finite mixture of linear regression models with k components
I The finite formulation is non-convex
I Commonly estimated via Expectation-Maximization algorithm

Machine learning papers on finite-component mixture of linear regression
(Li and Liang, 2018), high-dimensional Gaussian mixture (Yi and
Caramanis, 2015)

Previous nonparametric approaches to MLR
Beran and Hall (1992), Beran and Millar (1994), Beran et al. (1996)
Hoderlein et al. (2010)

We propose nonparametric maximum likelihood approach to the MLR model
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NPMLE of MLR
Under the MLR model, the conditional density fG

xi
of Yi given xi is

fG
xi
(yi) =

1

σ

∫
φ

(
yi − xT

i β

σ

)
dG(β), i = 1, . . . , n

Definition
The nonparametric maximum likelihood estimator (NPMLE) Ĝ of the true
mixing probability measure G∗ in the MLR model is defined by

Ĝ ∈ argmax
G

n∑
i=1

log fG
xi
(yi),

where the argmax is over all probability measures supported on some set K
in Rp

This is a convex optimization in terms of the likelihood vector
f = (fG

x1
(y1), . . . , f

G
xn
(yn))
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Existence of NPMLE
Theorem
For MLR model, if the maximization search space K in NPMLE is the whole
space Rp, or a compact set in Rp, then there exists an NPMLE that is
supported on at most n points in set K.

Previous results are only shown for compact sets (Lindsay, 1983)

Corollary
For any NPMLE Ĝ, fĜ = (f Ĝ

x1
, . . . , f Ĝ

xn
)T is the unique optimal solution to

maximize L(f) =
1

n

n∑
i=1

log f(i)

subject to f ∈ conv(PK)

Here PK = {fβ : β ∈ K}, conv(·) represents convex hull
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Brief Intro to Conditional Gradient Method (CGM)
Conditional gradient method (also known as Frank-Wolfe algorithm)
(Frank and Wolfe, 1956)

It is an iterative algorithm for constrained convex optimization

Recently regained attention due to its efficiency in large scale data
analysis (Jaggi, 2013)
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Computing NPMLE by CGM
Algorithm 1: Conditional gradient method for NPMLE
Data: {(xi, yi)}ni=1

Input: Noise level σ, search space K
Initialization: likelihood vector f(0) = fβ0 , active set A(0) = {fβ0}
while stopping criterion not met do

1. Approximately solving subproblem: Find g̃(t) ∈ PK s.t.

〈g̃(t),∇L(f(t))〉 > max
g∈PK

〈g,∇L(f(t))〉 − εs = max
g∈A

n∑
i=1

g(i)

f(t)(i)
− εs

2. Adding the new vector to active set: A(t+1) = A(t) ∪ {g̃(t)}
3. Re-optimization: f(t+1) := argmaxf∈conv(A(t+1)) L(f)

4. Updating active set: A(t+1) = {g(t+1)
j |π(t+1)

j > 0} for
f(t+1) =

∑Nt+1

i=1 π
(t+1)
j g

(t+1)
j

end

Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 12
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Why Conditional Gradient Method ?
Discretization-free
Instead of discretization, CGM adaptively adds new points into the
support of the estimator

Convergence guarantee
CGM for NPMLE has O( 1

T ) convergence rate under certain assumptions

Efficiency and practicality
The only computational bottleneck in CGM is the solving subproblem
step

I It suffices to do this step approximately, and the re-optimization step
makes sure the likelihood function does not decrease

I We use off-the-shelf solver for this step and achieves satisfactory
numerical performances (see numerical examples later)

Related to vertex direction method from the optimal design literature
(Wu, 1978)

Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 13
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How many components are there?

NPMLE is agnostic to the “number” of components

Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 14
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Numerical Example 1

Figure: Left: Noisy data; Middle: True mixture; Right: Fitted mixture

Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 15
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Numerical Example 1 (Continued)

Figure: True and fitted probability density functions (pdf) of y at different x’s
Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 16
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Numerical Example 2

Figure: Left: Noisy data; Middle: True mixture; Right: Fitted mixture

Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 17
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Numerical Example 2 (Continued)

Figure: True and fitted probability density functions (pdf) of y at different x’s
Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 18
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Numerical Example 3

Figure: Left: Noisy data; Middle: True mixture; Right: Fitted mixture

Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 19
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Numerical Example 3 (Continued)

Figure: True and fitted probability density functions (pdf) of y at different x’s
Hansheng Jiang (UC Berkeley) NPMLE Approach to Mixture of Regressions 20
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Loss Function
Recall that the conditional density of Y given x is fG∗

x and the estimated
conditional density is f Ĝ

x

Definition
The squared Hellinger distance H2(f Ĝ

x , fG∗

x ) is used as a measure of error
in predicting y for a fixed covariate value x, where

H2
(
f Ĝ
x , fG∗

x

)
=

∫ {
(f Ĝ

x (y))1/2 − (fG∗

x (y))1/2
}2

dy

Fixed design Average over xi, i = 1, . . . , n, which leads to the loss
function

H2
n

(
f Ĝ, fG∗

)
=

1

n

n∑
i=1

H2
(
f Ĝ
xi
, fG∗

xi

)
This presentation only covers fixed design. Please see our paper for
random design
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1

n

n∑
i=1

H2
(
f Ĝ
xi
, fG∗

xi

)

This presentation only covers fixed design. Please see our paper for
random design
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Finite-sample Bound: Fixed Design

Theorem
Assume that
(i) max16i6n ‖xi‖ 6 B
(ii) G∗ is supported on a ball centered at the origin with radius R > 1
Then

EH2
n(f

Ĝ, fG∗
) 6 C(p,B,R, σ)

(log n)p+1

n

When p is small, one gets nearly the parametric rate
Our paper gives an explicit expression for C(p,B,R, σ)
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Summary
We propose to fit mixture of linear regressions with the nonparametric
maximum likelihood estimators

We provide both algorithmic computing procedures and detailed
theoretical analysis

Our finite-sample bounds for the Hellinger error are parametric (up to
logarithmic multiplicative factors)

Future directions
I Other sorts of regression models, such as multivariate linear regression,

generalized linear model, and logistic regression
I When p is comparable to n, some sparsity assumptions might be needed

Thank You
Any questions or comments?
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Illustration on Real Data

(a) Music perception data (b) Aphids data

Figure: Real data experiments
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Finite-sample Bound: Random Design
Theorem

∫
H(f G̃, fG∗

)dµ(x)

6

(
Cp

min(1− α1, α2)

)1/2

εn +
ρ(LS0

, R, p)

n1/2
+

2(log n)1/2

n1/2

with probability at least 1− 3n−1, where

ε2n =

(
1 +

2RLS0

σ
√
2 log(3n2)

)p
(log n)p+1

n

Theorem
Under certain assumptions,

d(Ĝn, G
∗) → 0 in probability
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