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JD.com's Pricing Objective 
• Pricing strategies to boost revenue

Difficulties
• Data: Heterogeneous consumers

How do different consumers respond to prices and promotions?
• Model: Unknown price demand relationship

How do prices affect consumers’ purchase decisions?
• Decision: Intertemporal pricing 

How do current pricing policies affect the future?

JD.com has — lots of data!
• Data from thousands of consumers for one product
• Exact timestamps of individual consumer activities
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How do consumer valuations depend on historical prices?

Reference prices are  
shaped by historical prices

Marketing: Empirics 
Reference prices affect consumer 
valuations in an asymmetric way

Economics: Prospect theory 

Daniel Kahneman (Nobel 
Prize in Economics, 2002)
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• Reference discrepancy : reference price  - current price x r p
• Consumers perceive gains if  and losses if x > 0 x < 0
• Reference effect : incurred demand changeR(x, p)
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“The first sip of a drink tastes the best,  

           and the first dollar lost hurts the most.”  

Illustration of reference effects ( )a = 2, b = 1, c+ = c− = 1

“Diminishing sensitivity” property



Hansheng Jiang (University of Toronto)

Contributions

12

Formulate the heterogeneous consumer reference effects  
model in the individual level

Apply to real-world data from retailing platform JD.com and show that 
the proposed approach leads to significant improvement in revenue

Provide computational algorithm for optimal pricing policies 
and establish the sub-optimality of constant policies 

Propose a nonparametric statistical method for extracting consumer 
heterogeneity from transaction data



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

θ1, θ2, . . . , θN ∼ G



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution Gθ1, θ2, . . . , θN ∼ G



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

θ1r1, p1

θ1, θ2, . . . , θN ∼ G



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

θ1 θ2r1, p1 r2, p2

θ1, θ2, . . . , θN ∼ G



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

θ1 θ2r1, p1 r2, p2
……

θ1, θ2, . . . , θN ∼ G



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

θ1 θ2r1, p1 r2, p2 rN, pN
……

θ1, θ2, . . . , θN ∼ G

θN



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

θ1, θ2, . . . , θN ∼ G

θN

d1 d2 dn……



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data

θ1, θ2, . . . , θN ∼ G

θN

d1 d2 dn……



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data
(r1, p1, d1), (r2, p2, d2), . . . , (rN, pN, dN)

θ1, θ2, . . . , θN ∼ G

θN

d1 d2 dn……



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

Nonparametric methodθ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data
(r1, p1, d1), (r2, p2, d2), . . . , (rN, pN, dN)

θ1, θ2, . . . , θN ∼ G

θN

d1 d2 dn……



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

Nonparametric method
• Reduce model misspecification

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data
(r1, p1, d1), (r2, p2, d2), . . . , (rN, pN, dN)

θ1, θ2, . . . , θN ∼ G

θN

d1 d2 dn……



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

Nonparametric method
• Reduce model misspecification

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data
(r1, p1, d1), (r2, p2, d2), . . . , (rN, pN, dN)

θ1, θ2, . . . , θN ∼ G

θN

Nonparametric model classd1 d2 dn……



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

Nonparametric method
• Reduce model misspecification

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data
(r1, p1, d1), (r2, p2, d2), . . . , (rN, pN, dN)

θ1, θ2, . . . , θN ∼ G

θN

Nonparametric model classd1 d2 dn……

Parametric 
model class



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

Nonparametric method
• Reduce model misspecification

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data
(r1, p1, d1), (r2, p2, d2), . . . , (rN, pN, dN)

θ1, θ2, . . . , θN ∼ G

θN

Nonparametric model class

Latent class

G =
k

∑
i=1

πiδθi

d1 d2 dn……

Parametric 
model class



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

Nonparametric method
• Reduce model misspecification

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data
(r1, p1, d1), (r2, p2, d2), . . . , (rN, pN, dN)

θ1, θ2, . . . , θN ∼ G

θN

Nonparametric model class

Latent class
Continuous 

parametric class

G =
k

∑
i=1

πiδθi
G = Normal(θ̃, Σ)

d1 d2 dn……

Parametric 
model class



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

Nonparametric method
• Reduce model misspecification

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data
(r1, p1, d1), (r2, p2, d2), . . . , (rN, pN, dN)

θ1, θ2, . . . , θN ∼ G

θN

Nonparametric model class

Latent class
Continuous 

parametric class

G =
k

∑
i=1

πiδθi
G = Normal(θ̃, Σ)

Our proposal

d1 d2 dn……

Parametric 
model class



Hansheng Jiang (University of Toronto)

Learning Consumer Heterogeneity

13

Goal
• Learn unknown distribution G

Nonparametric method
• Reduce model misspecification

θ1 θ2r1, p1 r2, p2 rN, pN
……

Purchase decisions

Mixed data
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Nonparametric model class

Latent class
Continuous 

parametric class

G =
k

∑
i=1

πiδθi
G = Normal(θ̃, Σ)

Our proposal
• Nonparametric maximum likelihood estimator (NPMLE)

d1 d2 dn……

Parametric 
model class
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• Total log likelihood is

                                                      ℓ =
N

∑
n=1

log ℒn

14

“A Nonparametric Maximum Likelihood Approach to Mixture of Regression.” R&R at 
Journal of the American Statistical Association. H. Jiang, A. Guntuboyina.

An NPMLE maximizes  over all possible probability distributions ℓ

• Literature
 Long history of NPMLE [J. Kiefer, J. Wolfowitz (1956)]

 Non-asymptotic guarantees under Gaussian-noise regression models [H. Jiang, A. Guntuboyina (2021)] 

• Observation:  is concave with respect to likelihood vectors ℓ f = (ℒ1, …, ℒN)



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

Convexity



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

Convexity Caratheodary theorem



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)
Convexity Caratheodary theorem



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)
Provable convergence guarantees

Convexity Caratheodary theorem



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)
Provable convergence guarantees

Adaptively adding new component to mixture

Convexity Caratheodary theorem



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)
Provable convergence guarantees

Adaptively adding new component to mixture

• Algorithm illustration:

Convexity Caratheodary theorem



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)
Provable convergence guarantees

Adaptively adding new component to mixture

Find new consumer segment

• Algorithm illustration:

Convexity Caratheodary theorem



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)
Provable convergence guarantees

Adaptively adding new component to mixture

Find new consumer segment Re-optimize likelihood over new support set

• Algorithm illustration:

Convexity Caratheodary theorem



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)
Provable convergence guarantees

Adaptively adding new component to mixture

Find new consumer segment Re-optimize likelihood over new support set

• Algorithm illustration:

By solving subproblem

Convexity Caratheodary theorem



Hansheng Jiang (University of Toronto)

Computation of NPMLE

15

Theorem (informal)
NPMLEs exist and there exists an NPMLE that is supported on at most  components.N

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)
Provable convergence guarantees

Adaptively adding new component to mixture

Find new consumer segment Re-optimize likelihood over new support set

• Algorithm illustration:

By solving subproblem

By optimization over convex hull of finite points

Convexity Caratheodary theorem
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Contributions
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Formulate the heterogeneous consumer reference effects  
model in the individual level

Propose a nonparametric statistical method for extracting consumer 
heterogeneity from transaction data

Apply to real-world data from retailing platform JD.com and show that 
the proposed approach leads to significant improvement in revenue

Provide computational algorithm for optimal pricing policies 
and establish the sub-optimality of constant policies 
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‣  — memory parameterα ∈ [0,1]

• Long-term discounted revenue
Under price sequence , the platform’s long-term discounted revenue is{pt}∞

t=1

                                                  V(r0) =
∞

∑
t=1

βt pt ⋅ PG(rt , pt)

‣  — discount factor β ∈ [0,1]

• Platform’s pricing objective
Find the price sequence  that maximizes the long-term discounted revenue{pt}∞

t=1

17
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• Pricing under reference effects [I. Popescu and Y. Wu (2007)] [Z. Hu, X. Chen, P. Hu (2016)] [X. Chen, P. Hu, 

Z. Hu(2017)] [N. Chen, J. Nasiry (2020)]

18


x = r − p
R(x) = Demand(x + p, p) − Demand(p, p)

Question: do similar pricing structures hold in our individual consumer model?

Demand is modeled at the aggregate level with several assumptions [I. Popescu and Y. Wu (2007)] 

• Structural analysis of optimal pricing policies
Cyclic pricing policy is optimal if only gain-seeking consumers
Constant pricing policy is optimal if only loss-averse consumers
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• View as dynamic programming

Optimizing Long-Term Revenue

State rt Action pt State rt+1 ……

20

Theorem (Discretization guarantee, informal) The difference of the optimal 
long-term discounted revenue and its counterpart under discretization is 
bounded by 
                                      .0 ≤ V⋆(r) − V⋆

ϵ (r) ≤ O(ϵ)

Policy π

• Value function: long-term discounted revenue
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Initialize V0 = 0, k = 1

Modified policy iteration algorithm 

V(r0) = max
{pt}∞

t=1

∞

∑
t=1

βt ptPG(rt , pt)

s . t . rt = (1 − α)pt−1 + αrt−1

pt ∈ 𝒫ϵ(rt)

Pricing Optimization

Repeat 
Policy improvement

Generate new pricing policy  based on value function πk Vk−1

Approximate policy evaluation
Calculate the value function  according to policy Vk πk

Until convergence
k ← k + 1
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Example: Two Market Segments
Constant optimal pricing  constant optimal pricing  constant optimal pricing+ ≠

(a) Homogeneous, consumer A only
(aA, bA, cA+, cA−) = (2,2,0.2,0.2)

(b) Homogeneous, consumer B only
(aB, bB, cB+, cB−) = (−1,0.2,0,0)

(c) Heterogeneous, 50% consumer A, 50% consumer B

22

(d) Per period revenue

Consumer  mainly purchasingA Consumer  mainly purchasingB

Key: Consumer segmentation 
due to heterogeneous sensitivities 
to reference price!
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Formulate the heterogeneous consumer reference effects  
model in the individual level

Provide computational algorithm for optimal pricing policies 
and establish the sub-optimality of constant policies 

Propose a nonparametric statistical method for extracting consumer 
heterogeneity from transaction data

Apply to real-world data from retailing platform JD.com and show that 
the proposed approach leads to significant improvement in revenue
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EM: Finite mixed logit model 
estimated by Expectation-
Maximization 

SL: Single logit model

Lin: Piecewise linear model 
for aggregate level data

Demand 
Accuracy

Revenue

Average  30% increase in revenue!⩾

Methods

Numerical Comparisons

Less revenue increase 
when constant policy is optimal
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Theorem (informal)
The optimal steady state price, if exists, admits an explicit characterization depending on 
sensitivity parameters, memory parameter, and discount factor, and the steady state price can be 
computed efficiently.

“Multi-Product Dynamic Pricing with Reference Effects Under Logit Demand”. 
Under 2nd-round review at Operations Research. Amy Guo, H. Jiang, Z.-J. 
Max Shen. 
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Explicit Characterization of Optimal Steady State
Theorem Consider loss-neutral case with  products. If the optimal pricing policy 
admits a steady state such that , then  satisfies

 

where , and  is  the single-period revenue at the optimal 
steady state, which is the unique solution to the equation

Implications

• Optimal prices of different products differ based on  and 

• Efficient computation of optimal prices by binary search

N
p⋆(p⋆⋆) = p⋆⋆ p⋆⋆

p⋆⋆
i = Π⋆⋆ +

1
bi + ciκ

, ∀i ∈ N,

κ := (1 − β)/(1 − αβ) Π⋆⋆

Π = ∑
i∈N

1
bi + ciκ

⋅ exp (ai − biΠ −
bi

bi + ciκ ) .

bi ci

31



Hansheng Jiang (University of Toronto)

Sub-optimality Results

32

Theorem (Sub-optimality of constant pricing policy, informal) 
For sufficiently large , the constant pricing policy is not optimal even if  
(loss-averse or neutral) .

c− c+ ≤ c−



Hansheng Jiang (University of Toronto)

Sub-optimality Results

32

Theorem (Sub-optimality of constant pricing policy, informal) 
For sufficiently large , the constant pricing policy is not optimal even if  
(loss-averse or neutral) .

c− c+ ≤ c−

Implications: Constant pricing policy can be sub-optimal in the presence of loss-
averse consumers!



Hansheng Jiang (University of Toronto)

Sub-optimality Results

32

Theorem (Sub-optimality of constant pricing policy, informal) 
For sufficiently large , the constant pricing policy is not optimal even if  
(loss-averse or neutral) .

c− c+ ≤ c−

Implications: Constant pricing policy can be sub-optimal in the presence of loss-
averse consumers!

Loss-averse consumers Constant optimal pricing policy



Hansheng Jiang (University of Toronto)

Sub-optimality Results

32

Theorem (Sub-optimality of constant pricing policy, informal) 
For sufficiently large , the constant pricing policy is not optimal even if  
(loss-averse or neutral) .

c− c+ ≤ c−

Implications: Constant pricing policy can be sub-optimal in the presence of loss-
averse consumers!

Loss-averse consumers Constant optimal pricing policy



Hansheng Jiang (University of Toronto)

Sub-optimality Results

32

Theorem (Sub-optimality of constant pricing policy, informal) 
For sufficiently large , the constant pricing policy is not optimal even if  
(loss-averse or neutral) .

c− c+ ≤ c−

More general sub-optimality results than existing works

Implications: Constant pricing policy can be sub-optimal in the presence of loss-
averse consumers!

Loss-averse consumers Constant optimal pricing policy



Hansheng Jiang (University of Toronto)

Sub-optimality Results

32

Theorem (Sub-optimality of constant pricing policy, informal) 
For sufficiently large , the constant pricing policy is not optimal even if  
(loss-averse or neutral) .

c− c+ ≤ c−

More general sub-optimality results than existing works
Removes simplified assumption that memory parameter  [Z. Hu, J. Nasiry (2017)] α = 0

Implications: Constant pricing policy can be sub-optimal in the presence of loss-
averse consumers!

Loss-averse consumers Constant optimal pricing policy



Hansheng Jiang (University of Toronto)

Sub-optimality Results

32

Theorem (Sub-optimality of constant pricing policy, informal) 
For sufficiently large , the constant pricing policy is not optimal even if  
(loss-averse or neutral) .

c− c+ ≤ c−

More general sub-optimality results than existing works
Removes simplified assumption that memory parameter  [Z. Hu, J. Nasiry (2017)] α = 0
Holds for individual level model with arbitrary number of segments rather than only two 
segments [N. Chen, J. Nasiry (2020)] 

Implications: Constant pricing policy can be sub-optimal in the presence of loss-
averse consumers!

Loss-averse consumers Constant optimal pricing policy
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Illustrations of Demand Model

33

Figure 1: Dependence of reference effects on price

“Decreasing Curvature” Property

Figure 2: Examples of regional reference effects

“Dimensioning Sensitivity” Property


x = r − p
R(x, p) = Demand(x + p, p) − Demand(p, p)
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Computing NPMLE via Conditional Gradient Method Key Points
• Conditional Gradient Method is provably 

convergent at rate  under subproblem 
oracles

O(T−1)

• Convergence rate can be established even 
when subproblem is solved only 
approximately

• New consumer segment is adaptively added 
to distribution

• Prior work: Vertex Direction Method [BG Lindsay (1983)] requires ad-hoc discretization

• Our proposal: use modern convex optimization framework 

• Benefits: increased adaptivity and comprehensive analysis
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Myopic Pricing Policy
 

• Likely sub-optimal but computationally efficient

pm(rt) = arg max
p∈𝒫

Π(rt, p)

Proposition For any initial reference price ,

 

where  .

r

0 ≤ V*(r) − Vm(r) ≤
β(1 − α)

(1 − αβ)(1 − β)
η(G)pH

η(G) = min (1, sup
(a,b,c+,c−)∈supp(G)

max(c+, c−)
b + c− )
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Reference Effects
• Reference discrepancy : reference price  - current price 

• Reference effect : incurred demand change

• Frequent consumers perceive gains if  and losses if 

• Consumers respond differently under reference effects

x r p
R(p)

x > 0 x < 0
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When does the myopic pricing policy perform well?
When memory parameter , reference prices are unchanged α → 1
When discount factor , less weights are allocated to future revenueβ → 0


