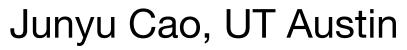
Intertemporal Pricing in the Presence of Consumer Behaviors

Hansheng Jiang Rotman School of Management University of Toronto

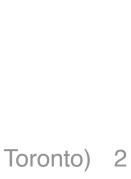
YinzOR 2023 Carnegie Mellon University



"Intertemporal Pricing via Nonparametric Estimation: Integrating Reference Effects and Consumer Heterogeneity". Manufacturing & Service Operations Management. H. Jiang, Junyu Cao, Z.-J. Max Shen.

"Multi-Product Dynamic Pricing with Reference Effects Under Logit Demand". Under 2nd-round review at Operations Research. Amy Guo, H. Jiang, Z.-J. Max Shen.

Max Shen, HKU



China's leading e-commerce platform



China's leading e-commerce platform



China's leading e-commerce platform

JD.com's Pricing Objective

China's leading e-commerce platform

JD.com's Pricing Objective • Pricing strategies to boost revenue



China's leading e-commerce platform

Difficulties

JD.com's Pricing Objective • Pricing strategies to boost revenue

China's leading e-commerce platform

JD.com's Pricing ObjectivePricing strategies to boost revenue

DifficultiesData: Heterogeneous consumers

China's leading e-commerce platform

JD.com's Pricing Objective • Pricing strategies to boost revenue

Difficulties

• **Data:** Heterogeneous consumers

• How do different consumers respond to prices and promotions?

China's leading e-commerce platform

JD.com's Pricing Objective • Pricing strategies to boost revenue

Difficulties

• **Data:** Heterogeneous consumers

• How do different consumers respond to prices and promotions?

• Model: Unknown price demand relationship

China's leading e-commerce platform

JD.com's Pricing Objective • Pricing strategies to boost revenue

Difficulties

• **Data:** Heterogeneous consumers

• How do different consumers respond to prices and promotions?

• Model: Unknown price demand relationship

• How do prices affect consumers' purchase decisions?

China's leading e-commerce platform

JD.com's Pricing Objective • Pricing strategies to boost revenue

Difficulties

- **Decision:** Intertemporal pricing

• **Data:** Heterogeneous consumers

• How do different consumers respond to prices and promotions?

- Model: Unknown price demand relationship
 - How do prices affect consumers' purchase decisions?

China's leading e-commerce platform

Difficulties

- **Decision:** Intertemporal pricing

• How do current pricing policies affect the future?

JD.com's Pricing Objective • Pricing strategies to boost revenue

• **Data:** Heterogeneous consumers

• How do different consumers respond to prices and promotions?

- Model: Unknown price demand relationship
 - How do prices affect consumers' purchase decisions?



Difficulties

- **Data:** Heterogeneous consumers • How do different consumers respond to prices and promotions?
- Model: Unknown price demand relationship • How do prices affect consumers' purchase decisions?
- **Decision:** Intertemporal pricing

JD.com's Pricing Objective • Pricing strategies to boost revenue

- *How do current pricing policies affect the future?*
- JD.com has lots of data!

Difficulties

- **Data:** Heterogeneous consumers • How do different consumers respond to prices and promotions?
- Model: Unknown price demand relationship • How do prices affect consumers' purchase decisions?
- **Decision:** Intertemporal pricing

JD.com's Pricing Objective • Pricing strategies to boost revenue

• How do current pricing policies affect the future?

JD.com has — lots of data!

• Data from thousands of consumers for one product

Difficulties

- **Data:** Heterogeneous consumers • How do different consumers respond to prices and promotions?
- **Model:** Unknown price demand relationship • *How do prices affect consumers' purchase decisions?*
- **Decision:** Intertemporal pricing

- Exact timestamps of individual consumer activities
- Data from thousands of consumers for one product

JD.com's Pricing Objective • Pricing strategies to boost revenue

• *How do current pricing policies affect the future?*

JD.com has — lots of data!



Observation



Observation

For frequently purchased products, consistently low prices might *not* boost demand after some time

Observation

Why?

For frequently purchased products, consistently low prices might *not* boost demand after some time

Observation

Why? Reference price effect!

For frequently purchased products, consistently low prices might *not* boost demand after some time

Observation

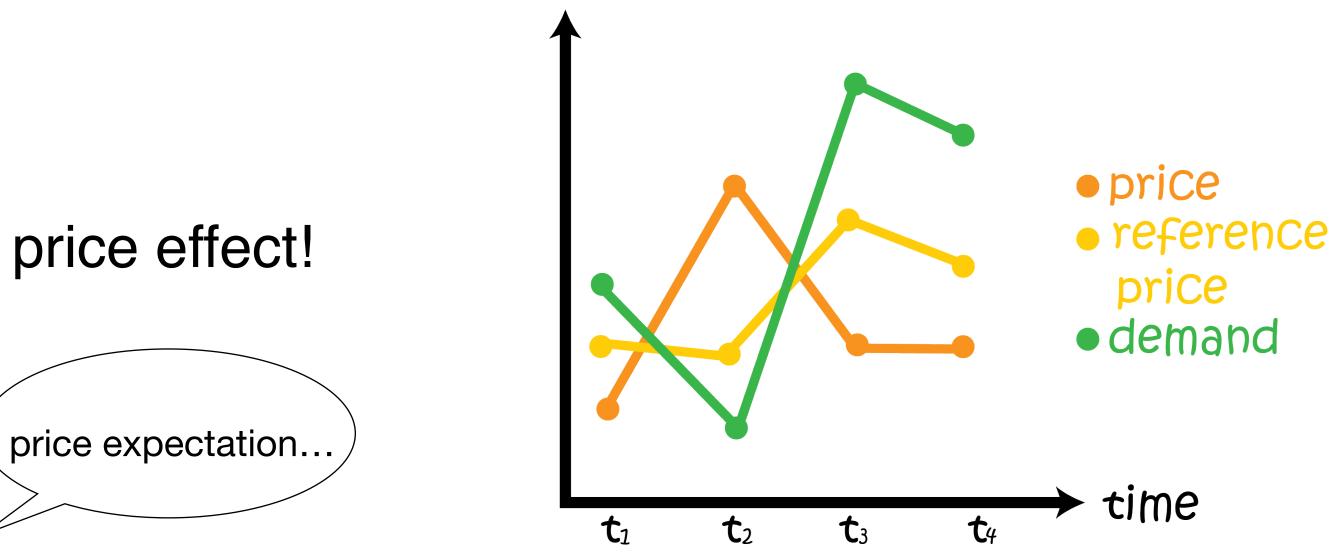
Why? Reference price effect!

For frequently purchased products, consistently low prices might *not* boost demand after some time

Observation

Why? Reference price effect!

For frequently purchased products, consistently low prices might *not* boost demand after some time



Popescu I, Wu Y (2007) "Dynamic pricing strategies with reference effects". Operations Research 55(3):413–429.



Snapshots of a cereal product from Amazon's website

Popescu I, Wu Y (2007) "Dynamic pricing strategies with reference effects". Operations Research 55(3):413–429.

Popescu I, Wu Y (2007) "Dynamic pricing strategies with reference effects". Operations Research 55(3):413–429.

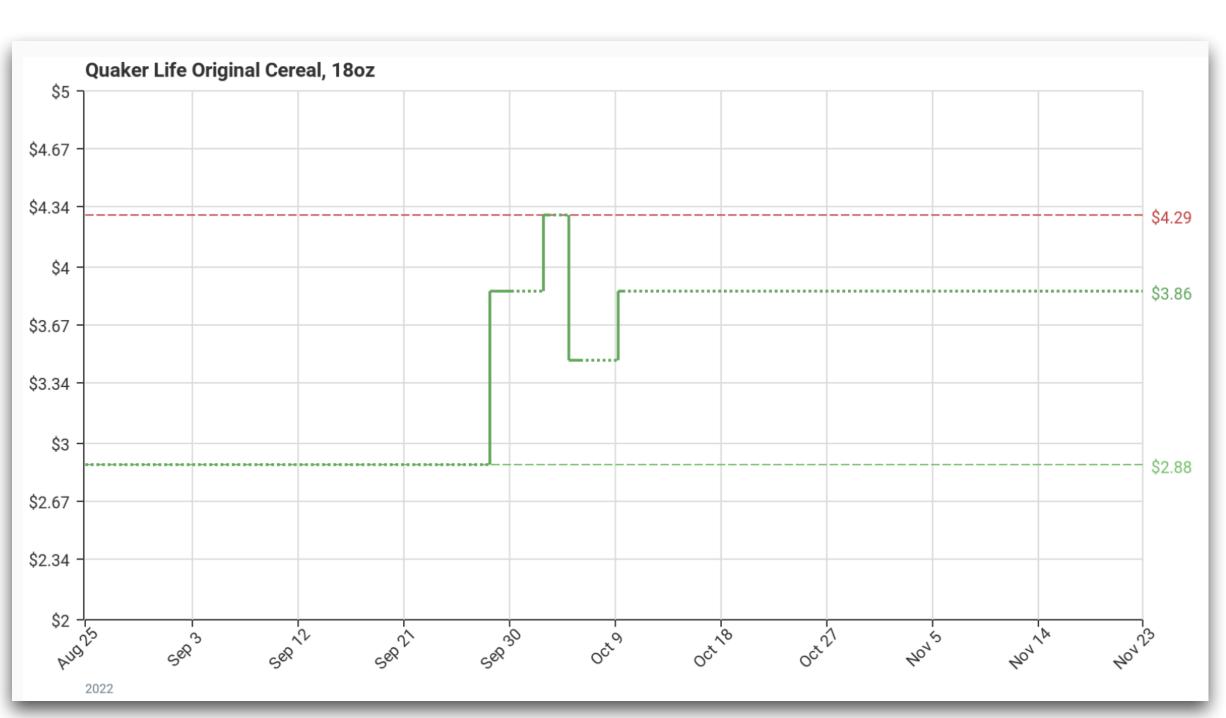
Popescu I, Wu Y (2007) "Dynamic pricing strategies with reference effects". Operations Research 55(3):413–429.

Reference price influences demand positively

Popescu I, Wu Y (2007) "Dynamic pricing strategies with reference effects". Operations Research 55(3):413–429.

Reference price influences demand positively

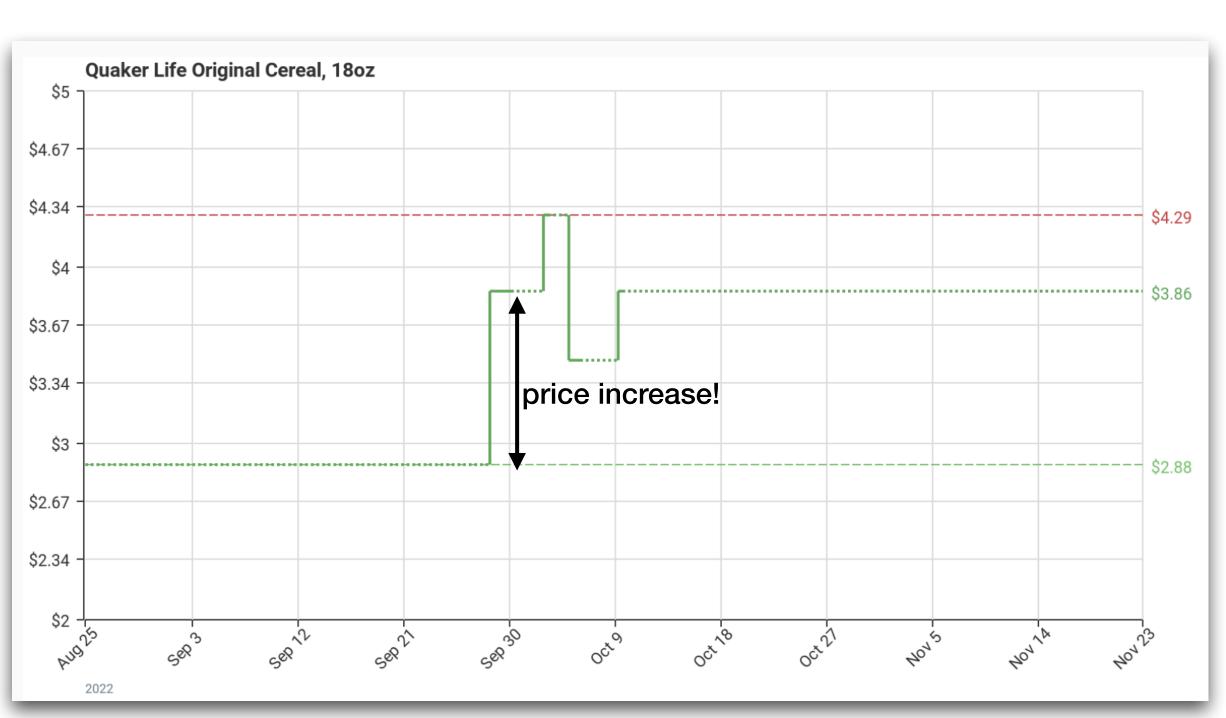
Popescu I, Wu Y (2007) "Dynamic pricing strategies with reference effects". Operations Research 55(3):413–429.



Historical prices of this cereal product (source: camelcamelcamel.com)

Reference price influences demand positively

Popescu I, Wu Y (2007) "Dynamic pricing strategies with reference effects". Operations Research 55(3):413–429.



Historical prices of this cereal product (source: camelcamelcamel.com)

Reference price influences demand positively

Popescu I, Wu Y (2007) "Dynamic pricing strategies with reference effects". Operations Research 55(3):413–429.

Historical prices of this cereal product (source: camelcamelcamel.com)

Reference price influences demand positively

Popescu I, Wu Y (2007) "Dynamic pricing strategies with reference effects". Operations Research 55(3):413–429.

Historical prices of this cereal product (source: camelcamelcamel.com)

Reference price influences demand negatively

Balancing Theory and Practice

Balancing Theory and Practice

Theory

Theory

Homogeneous consumer

Balancing Theory and Practice

Theory

Homogeneous consumer

Aggregate market data

Balancing Theory and Practice

Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Balancing Theory and Practice

Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Optimal price is a fixed point

Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Optimal price is a fixed point

Practice

Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Optimal price is a fixed point

Practice

Heterogeneous consumer



Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Optimal price is a fixed point

Practice

Heterogeneous consumer

Individual consumer data

Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Optimal price is a fixed point

Practice

Heterogeneous consumer

Individual consumer data

Unknown stochastic demand

Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Optimal price is a fixed point

Practice

Heterogeneous consumer

Individual consumer data

Unknown stochastic demand

Optimal pricing policy is a sequence

Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Optimal price is a fixed point

Tractability

Practice

Heterogeneous consumer

Individual consumer data

Unknown stochastic demand

Optimal pricing policy is a sequence

Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Optimal price is a fixed point

Tractability

Practice

Heterogeneous consumer

Individual consumer data

Unknown stochastic demand

Optimal pricing policy is a sequence

Practicality

Theory

Homogeneous consumer

Aggregate market data

Known deterministic demand

Optimal price is a fixed point

Practice

Heterogeneous consumer

Individual consumer data

Unknown stochastic demand

Optimal pricing policy is a sequence

Practicality

"Intertemporal Pricing via Nonparametric Estimation: Integrating Reference Effects and Consumer Heterogeneity". *Manufacturing & Service Operations Management. (M&SOM)* **H. Jiang**, Junyu Cao, Z.-J. Max Shen.

Formulate the heterogeneous consumer reference effects model in the individual level

"Intertemporal Pricing via Nonparametric Estimation: Integrating Reference Effects and Consumer Heterogeneity". Manufacturing & Service Operations Management. (M&SOM) H. Jiang, Junyu Cao, Z.-J. Max Shen.

Contributions

Formulate the heterogeneous consumer reference effects model in the individual level

Propose a nonparametric statistical method for extracting consumer heterogeneity from transaction data

"Intertemporal Pricing via Nonparametric Estimation: Integrating Reference Effects and Consumer Heterogeneity". *Manufacturing & Service Operations Management. (M&SOM)* **H. Jiang**, Junyu Cao, Z.-J. Max Shen.

Formulate the heterogeneous consumer reference effects model in the individual level

Propose a nonparametric statistical method for extracting consumer heterogeneity from transaction data

Provide computational algorithm for optimal pricing policies and establish the sub-optimality of constant policies

"Intertemporal Pricing via Nonparametric Estimation: Integrating Reference Effects and Consumer Heterogeneity". *Manufacturing & Service Operations Management. (M&SOM)* H. Jiang, Junyu Cao, Z.-J. Max Shen.

Formulate the heterogeneous consumer reference effects model in the individual level

Propose a nonparametric statistical method for extracting consumer heterogeneity from transaction data

Provide computational algorithm for optimal pricing policies and establish the sub-optimality of constant policies

"Intertemporal Pricing via Nonparametric Estimation: Integrating Reference Effects and Consumer Heterogeneity". Manufacturing & Service Operations Management. (M&SOM) H. Jiang, Junyu Cao, Z.-J. Max Shen.

Apply to real-world data from retailing platform JD.com and show that the proposed approach leads to significant improvement in revenue

Propose a nonparametric statistical method for extracting consumer heterogeneity from transaction data

Provide computational algorithm for optimal pricing policies and establish the sub-optimality of constant policies

Apply to real-world data from retailing platform JD.com and show that the proposed approach leads to significant improvement in revenue

Formulate the heterogeneous consumer reference effects model in the individual level



How do consumer valuations depend on historical prices?

How do consumer valuations depend on historical prices?

Marketing: Empirics

Reference prices are shaped by historical prices

How do consumer valuations depend on historical prices?

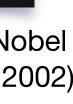
Marketing: Empirics

Reference prices are shaped by historical prices

Economics: Prospect theory

Reference prices affect consumer valuations in an asymmetric way

Daniel Kahneman (Nobel Prize in Economics, 2002)





Time t

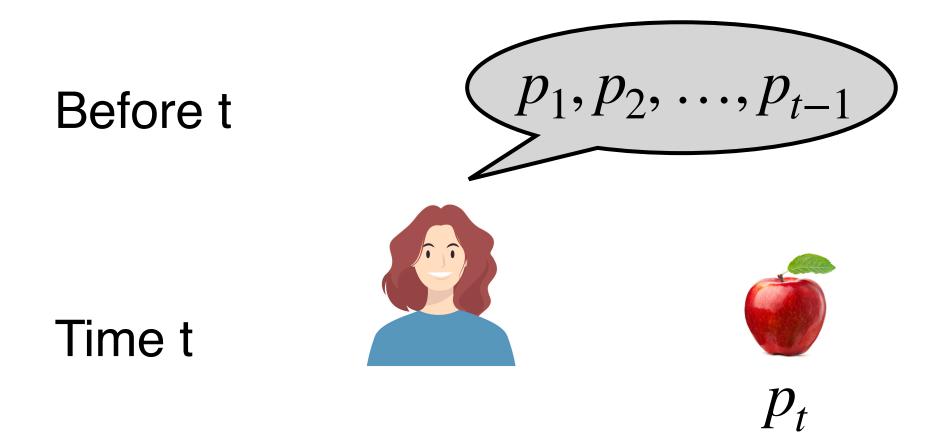


Time t

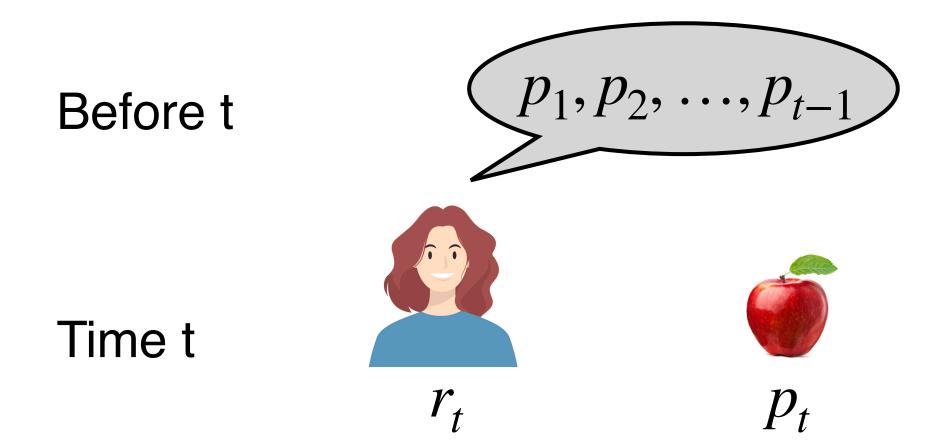


Time t

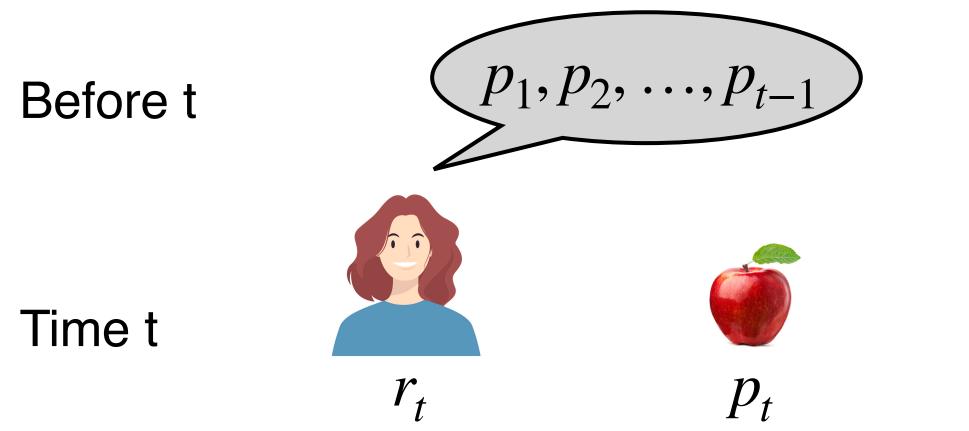




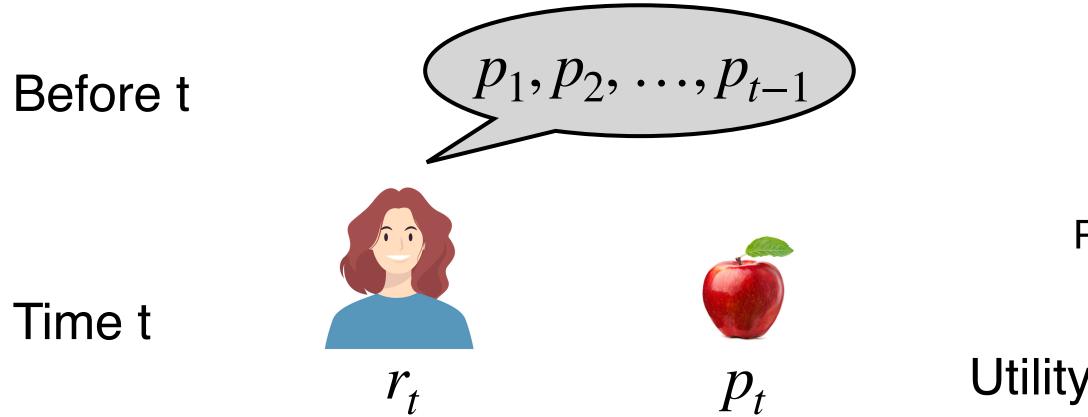






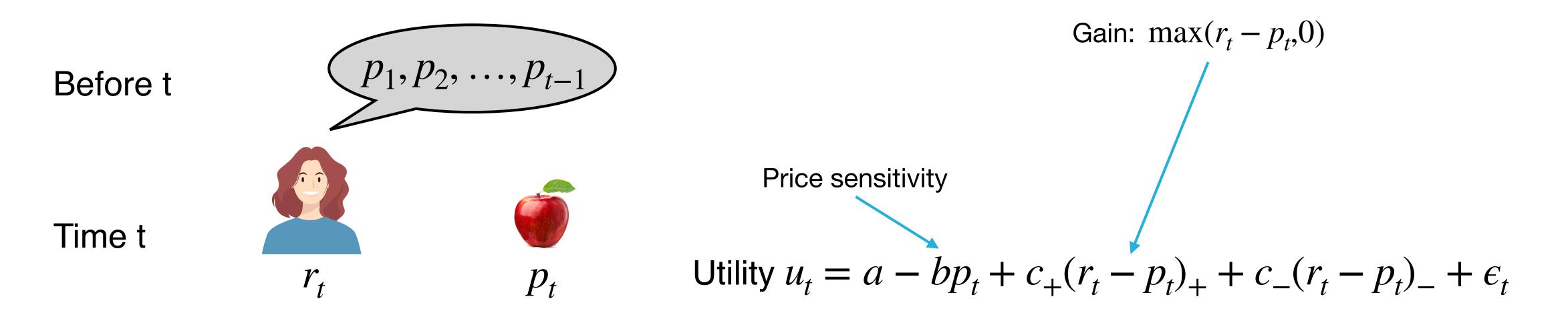


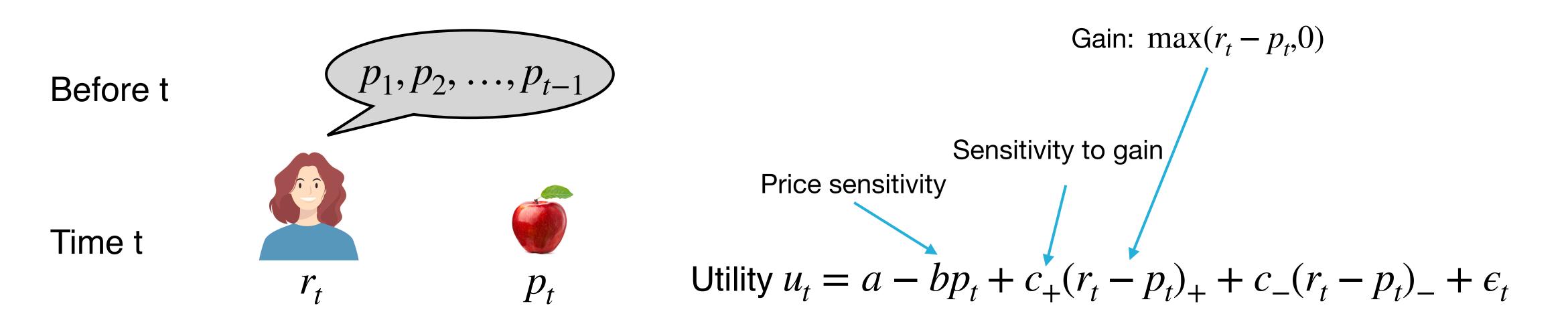
Utility $u_t = a - bp_t + c_+(r_t - p_t)_+ + c_-(r_t - p_t)_- + \epsilon_t$

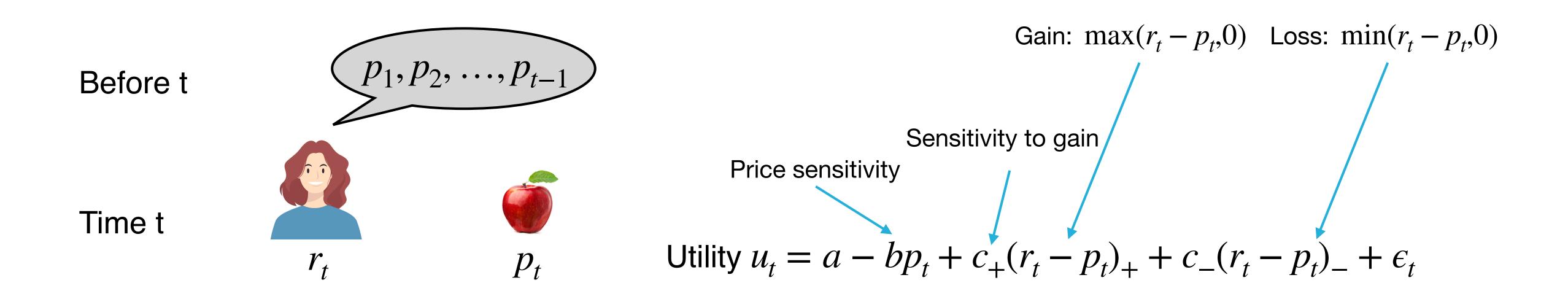


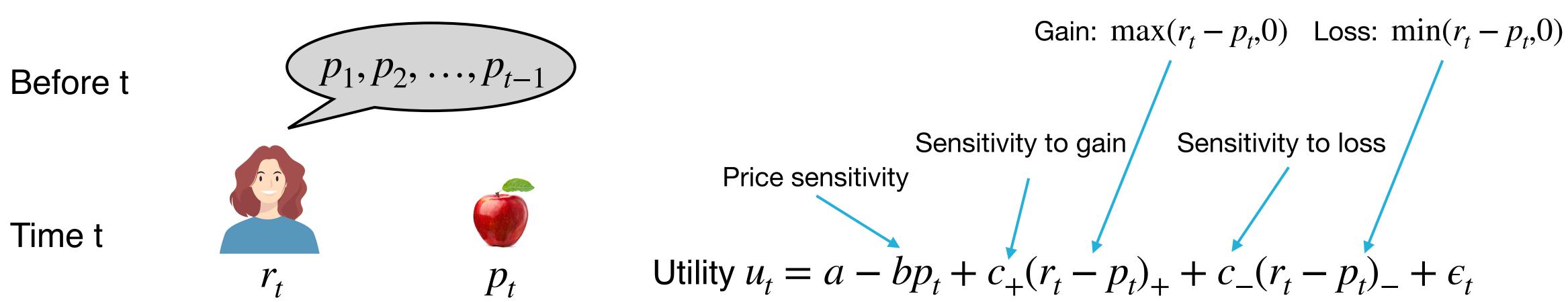
Price sensitivity

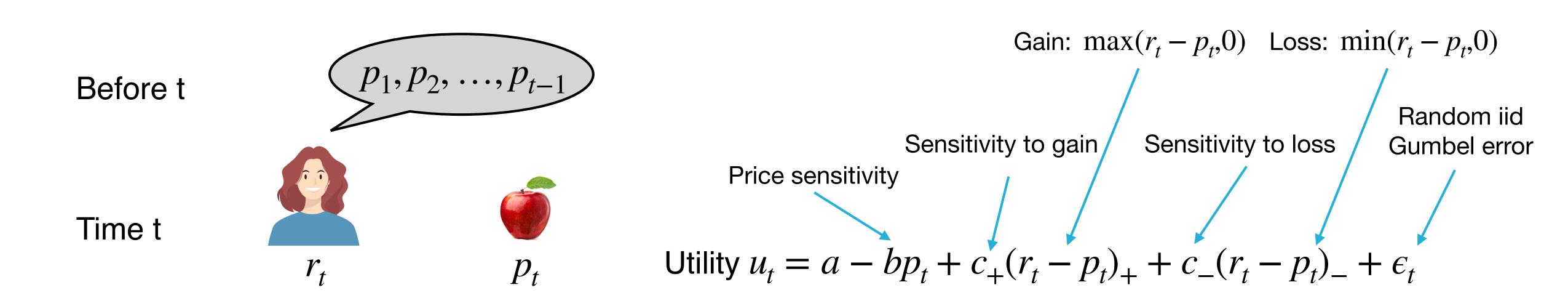
Utility $u_t = a - bp_t + c_+(r_t - p_t)_+ + c_-(r_t - p_t)_- + \epsilon_t$

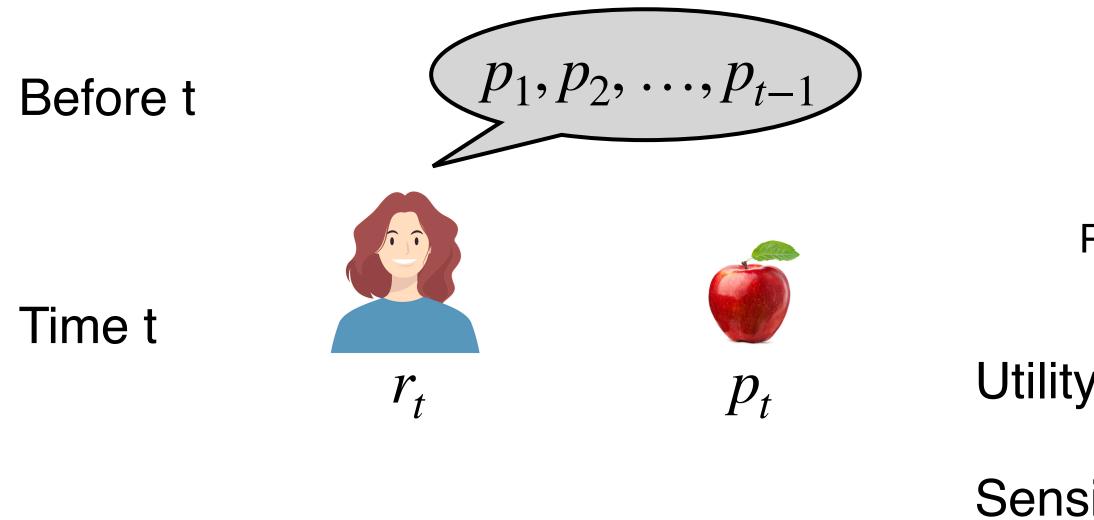




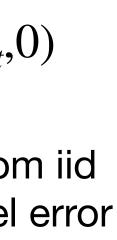


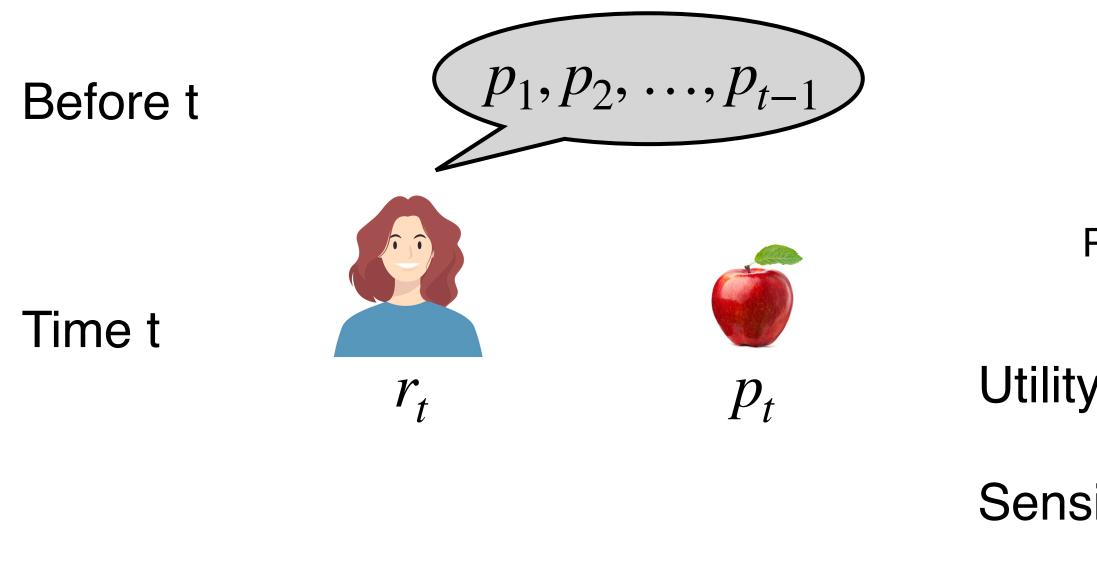






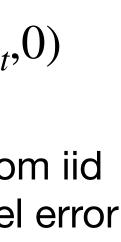
Gain:
$$\max(r_t - p_t, 0)$$
 Loss: $\min(r_t - p_t, 0)$
Sensitivity to gain Sensitivity to loss Rando Gumbe
Price sensitivity
 $u_t = a - bp_t + c_+(r_t - p_t)_+ + c_-(r_t - p_t)_- + \epsilon_t$
Solutivity parameter $\theta = (a, b, c_+, c_-)$



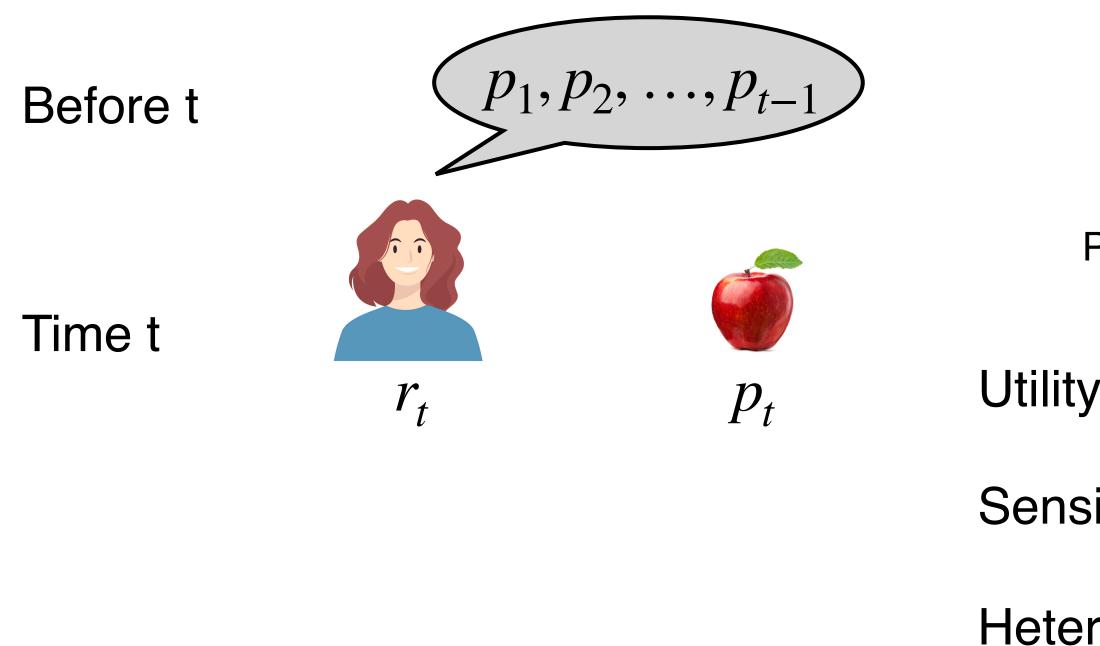


Gain:
$$\max(r_t - p_t, 0)$$
 Loss: $\min(r_t - p_t)$
Sensitivity to gain Sensitivity to loss Rando
Gumbe
Price sensitivity
 $y u_t = a - bp_t + c_+(r_t - p_t)_+ + c_-(r_t - p_t)_- + \epsilon_t$
Solution Sensitivity parameter $\theta = (a, b, c_+, c_-)$

Heterogeneous consumers $\theta \sim G$



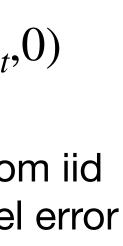
Heterogeneous Consumer Model



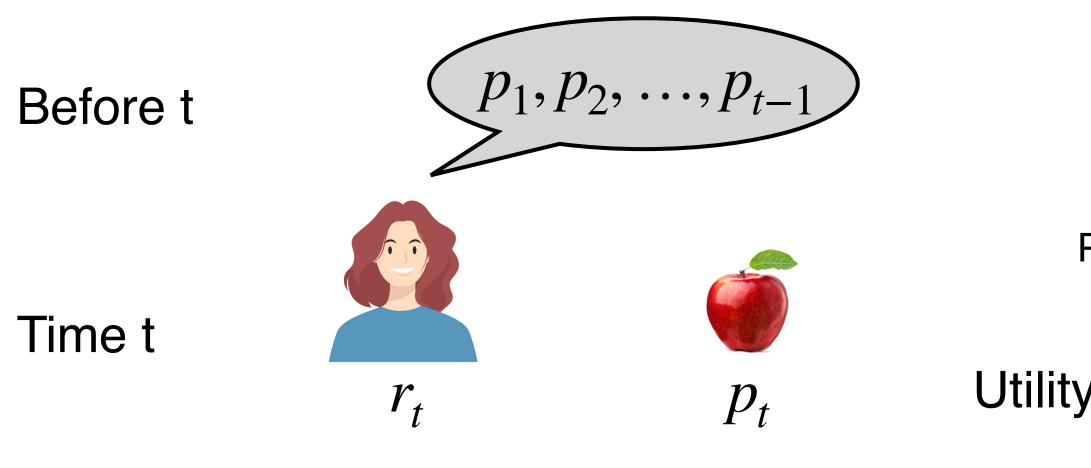
Gain:
$$\max(r_t - p_t, 0)$$
 Loss: $\min(r_t - p_t)$
Sensitivity to gain Sensitivity to loss Rando
Gumbe
Price sensitivity
 $y u_t = a - bp_t + c_+(r_t - p_t)_+ + c_-(r_t - p_t)_- + c_t$
Sitivity parameter $\theta = (a, b, c_+, c_-)$

Heterogeneous consumers $\boldsymbol{\theta} \sim G$

Key: No parametric assumption is imposed on G!



Heterogeneous Consumer Model



- Sens

Г $\mathbf{P}^G(r_t, p_t) =$ J_{θ∈}€

Gain:
$$\max(r_t - p_t, 0)$$
 Loss: $\min(r_t - p_t)$
Sensitivity to gain Sensitivity to loss Rando
Gumber
Price sensitivity
 $y u_t = a - bp_t + c_+(r_t - p_t)_+ + c_-(r_t - p_t)_- + \epsilon_t$
Solutivity parameter $\theta = (a, b, c_+, c_-)$

Heterogeneous consumers $\boldsymbol{\theta} \sim G$

Key: No parametric assumption is imposed on G!

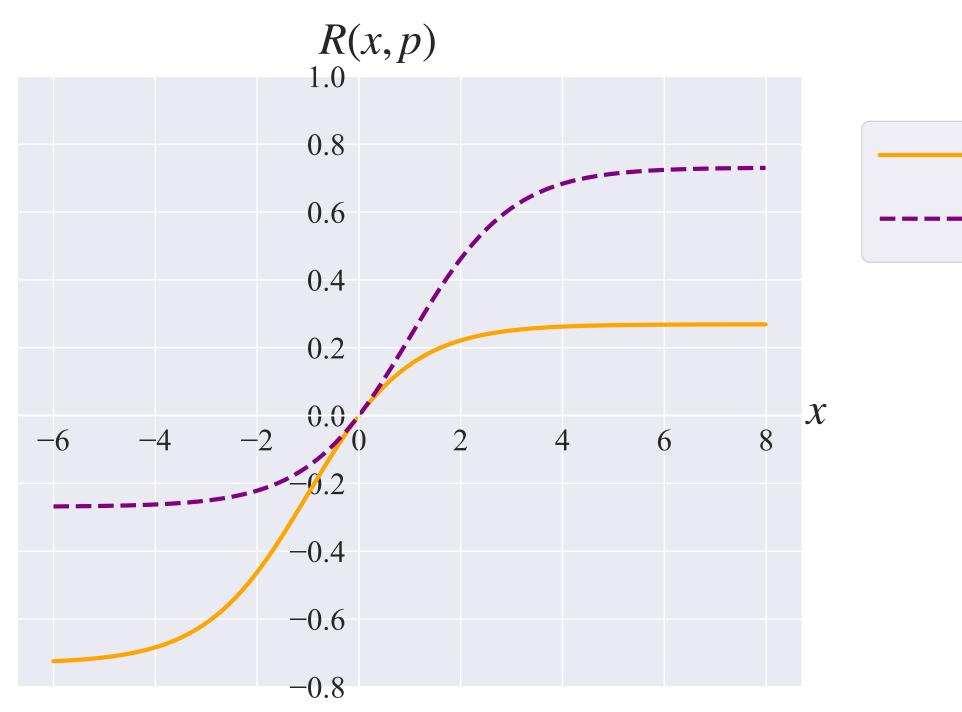
$$\frac{\exp\{u_t(\boldsymbol{\theta})\}}{\exp\{u_t(\boldsymbol{\theta})\}+1}dG(\boldsymbol{\theta})$$

• Reference discrepancy *x*: reference price *r* - current price *p*

- Reference discrepancy *x*: reference price *r* current price *p*
- Consumers perceive gains if x > 0 and losses if x < 0

- Reference discrepancy *x*: reference price *r* current price *p*
- Consumers perceive gains if x > 0 and losses if x < 0
- Reference effect R(x, p): incurred demand change

- Reference discrepancy *x*: reference price *r* current price *p*
- Consumers perceive gains if x > 0 and losses if x < 0
- Reference effect R(x, p): incurred demand change

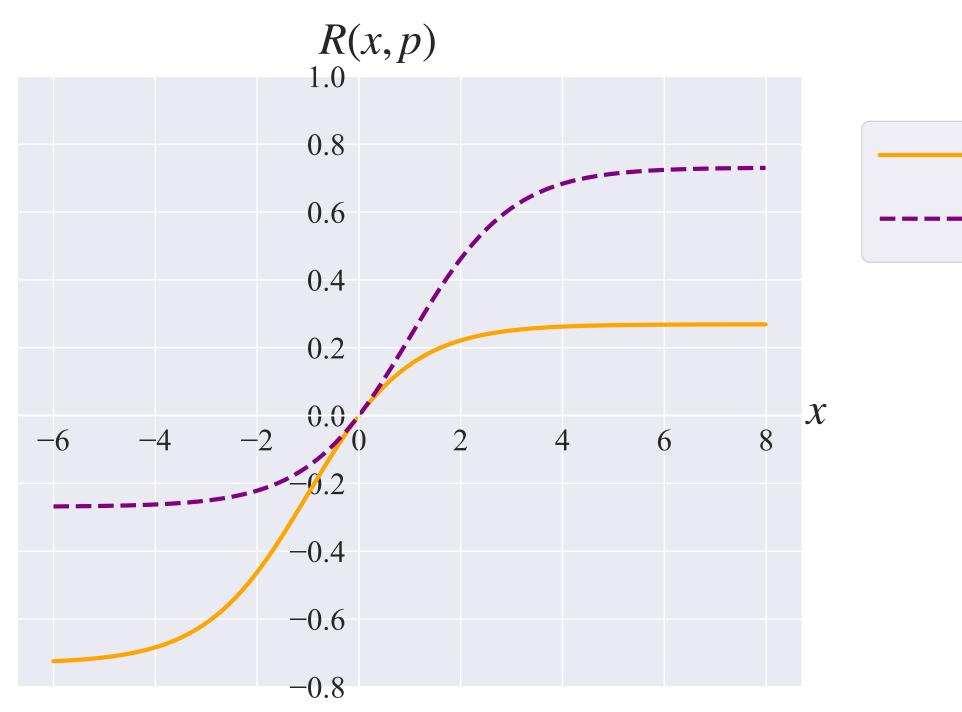


"Diminishing sensitivity" property

Illustration of reference effects ($a = 2, b = 1, c_{+} = c_{-} = 1$)

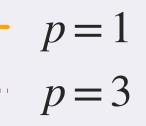
p=1p=3

- Reference discrepancy *x*: reference price *r* current price *p*
- Consumers perceive gains if x > 0 and losses if x < 0
- Reference effect R(x, p): incurred demand change



"Diminishing sensitivity" property

Illustration of reference effects ($a = 2, b = 1, c_{+} = c_{-} = 1$)



"The first sip of a drink tastes the best,

and the first dollar lost hurts the most.

Contributions

Formulate the heterogeneous consumer reference effects model in the individual level

Propose a nonparametric statistical method for extracting consumer heterogeneity from transaction data

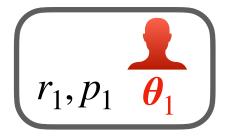
Provide computational algorithm for optimal pricing policies and establish the sub-optimality of constant policies

Apply to real-world data from retailing platform JD.com and show that the proposed approach leads to significant improvement in revenue

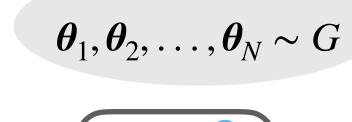
 $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \ldots, \boldsymbol{\theta}_N \sim G$

 $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \ldots, \boldsymbol{\theta}_N \sim G$

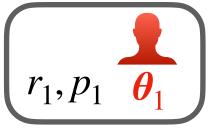
Goal



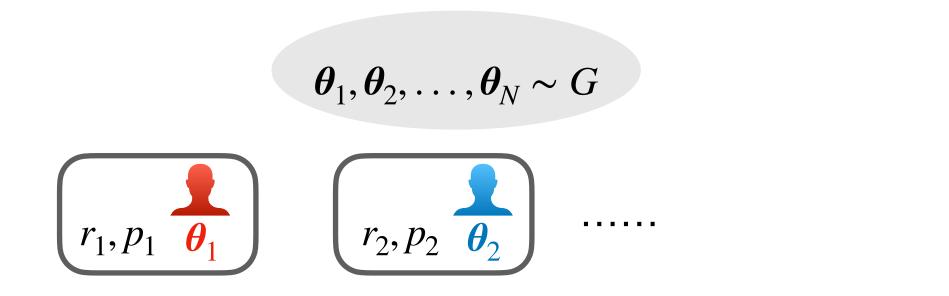
Goal



 $r_2, p_2 \theta_2$

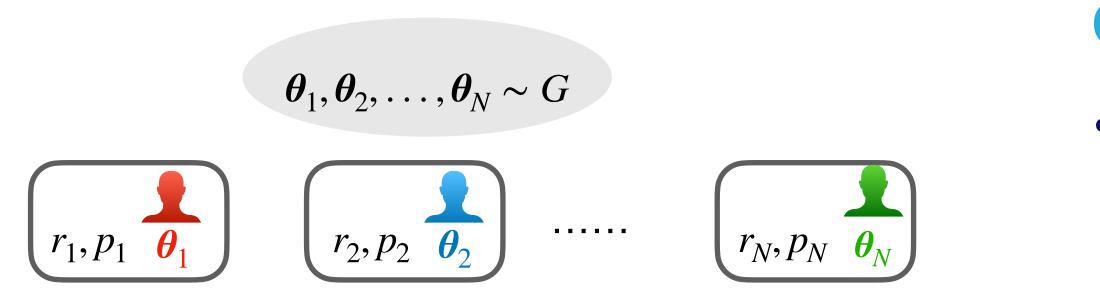


Goal



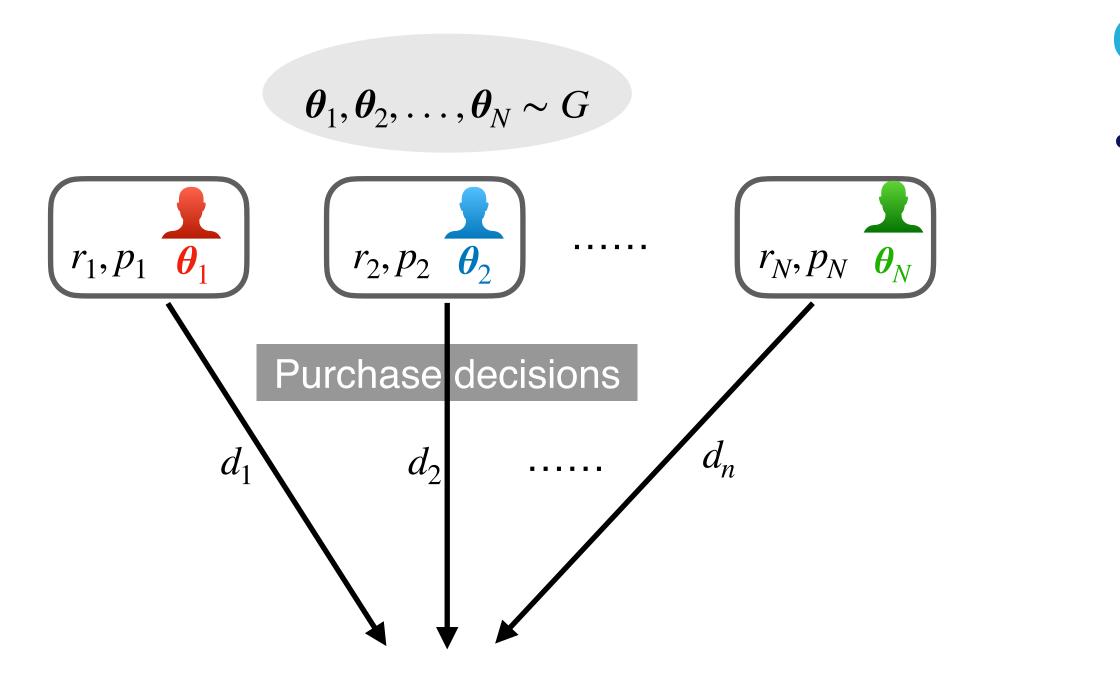
Goal

- Learn unknown distribution ${\cal G}$



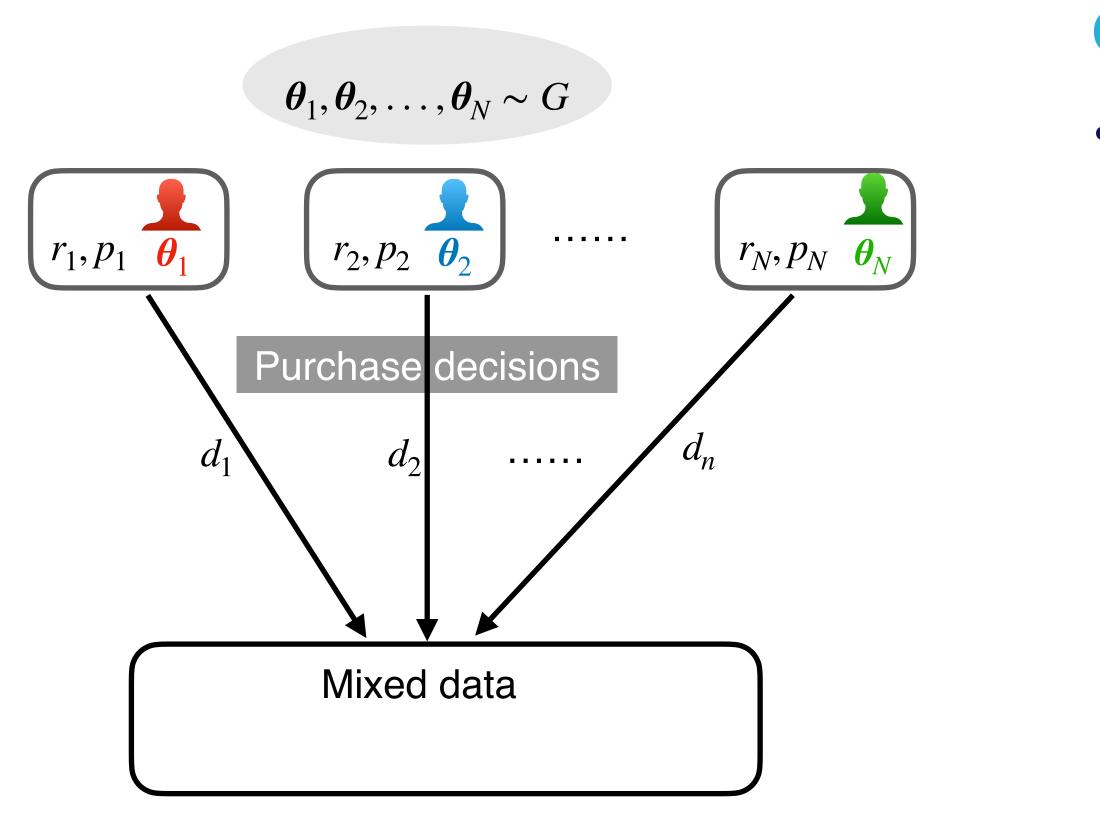
Goal

- Learn unknown distribution ${\cal G}$

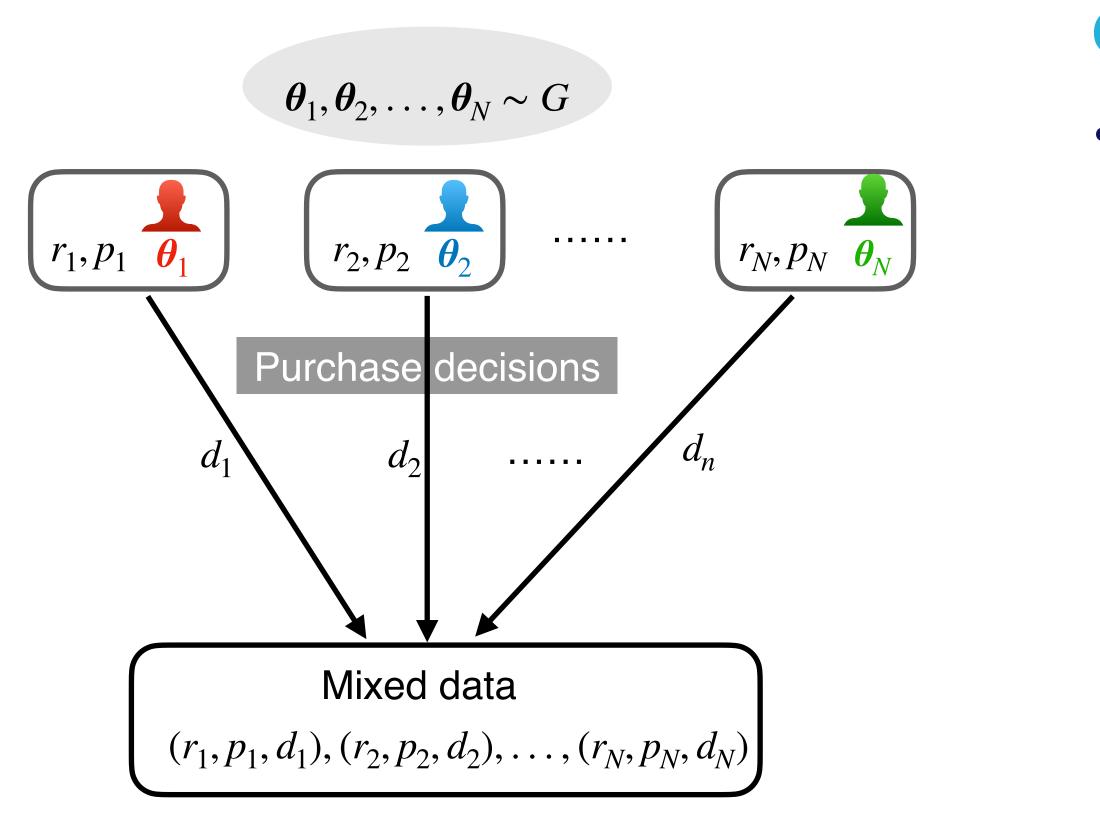


Goal

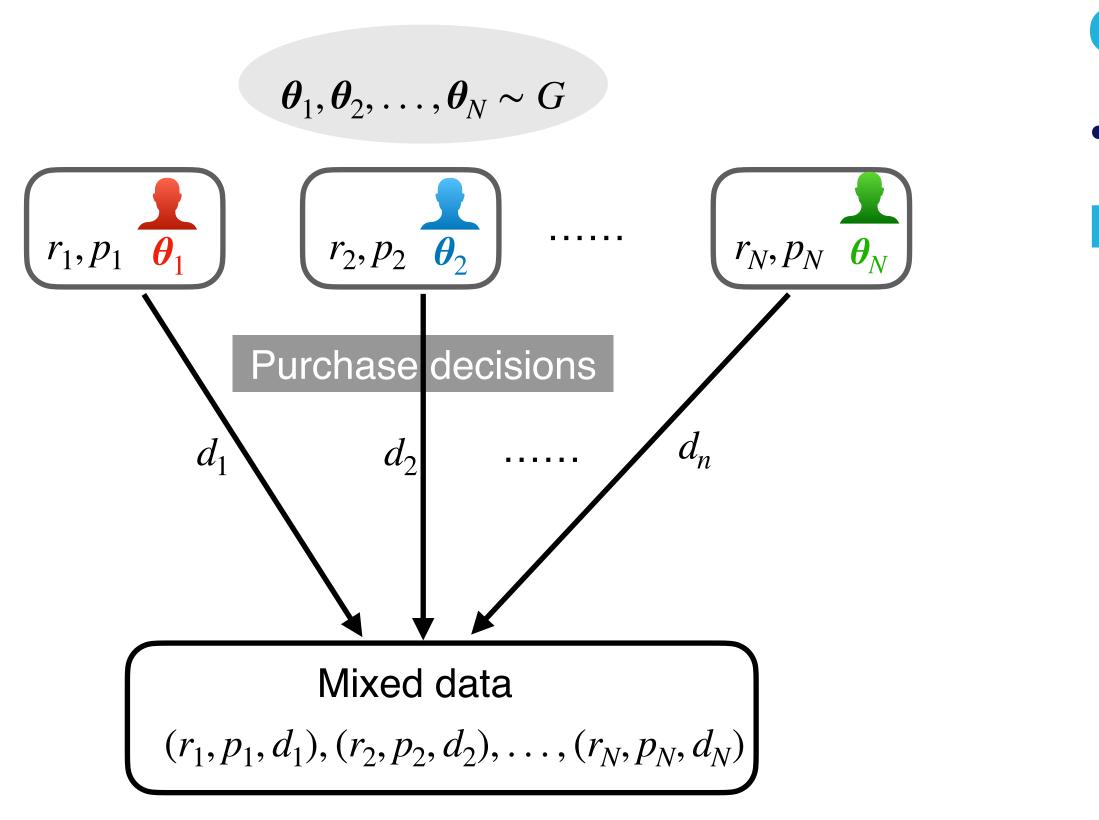
- Learn unknown distribution ${\cal G}$



Goal

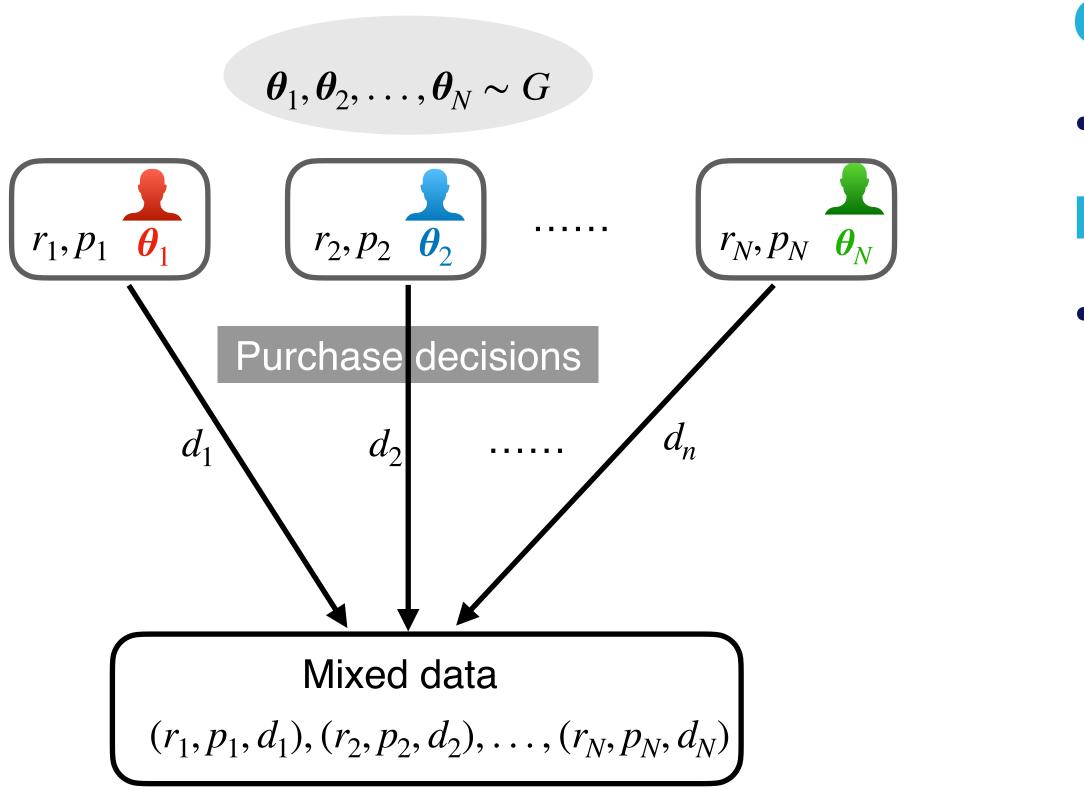


Goal



Goal

- Learn unknown distribution ${\cal G}$
- Nonparametric method

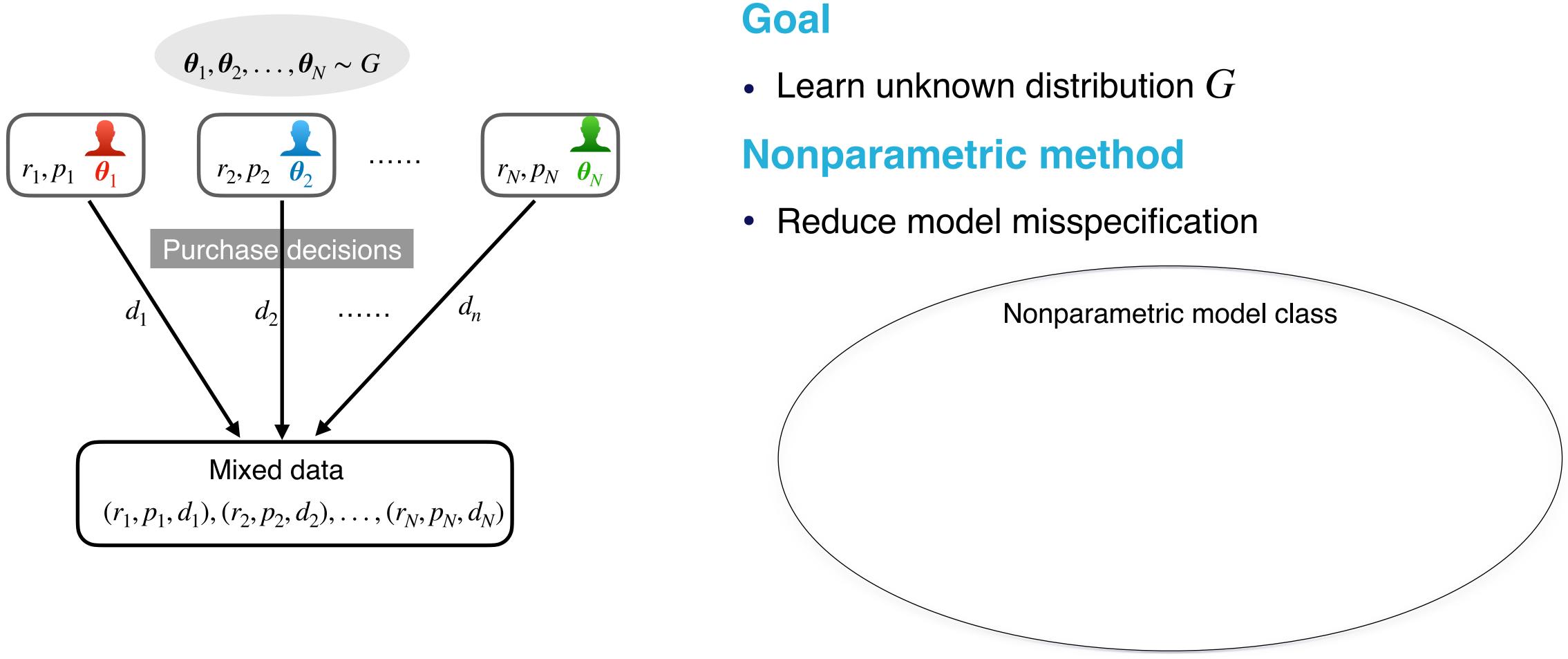


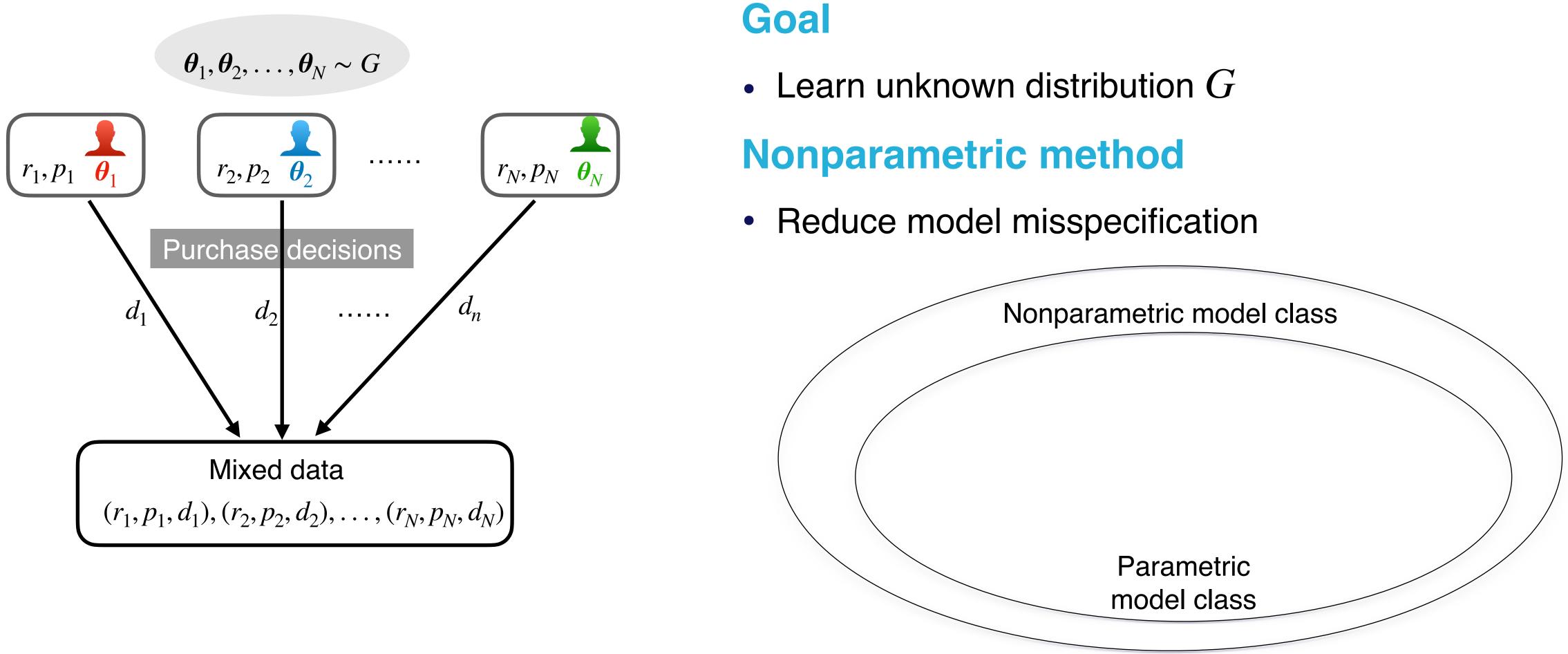
Goal

- Learn unknown distribution ${\cal G}$

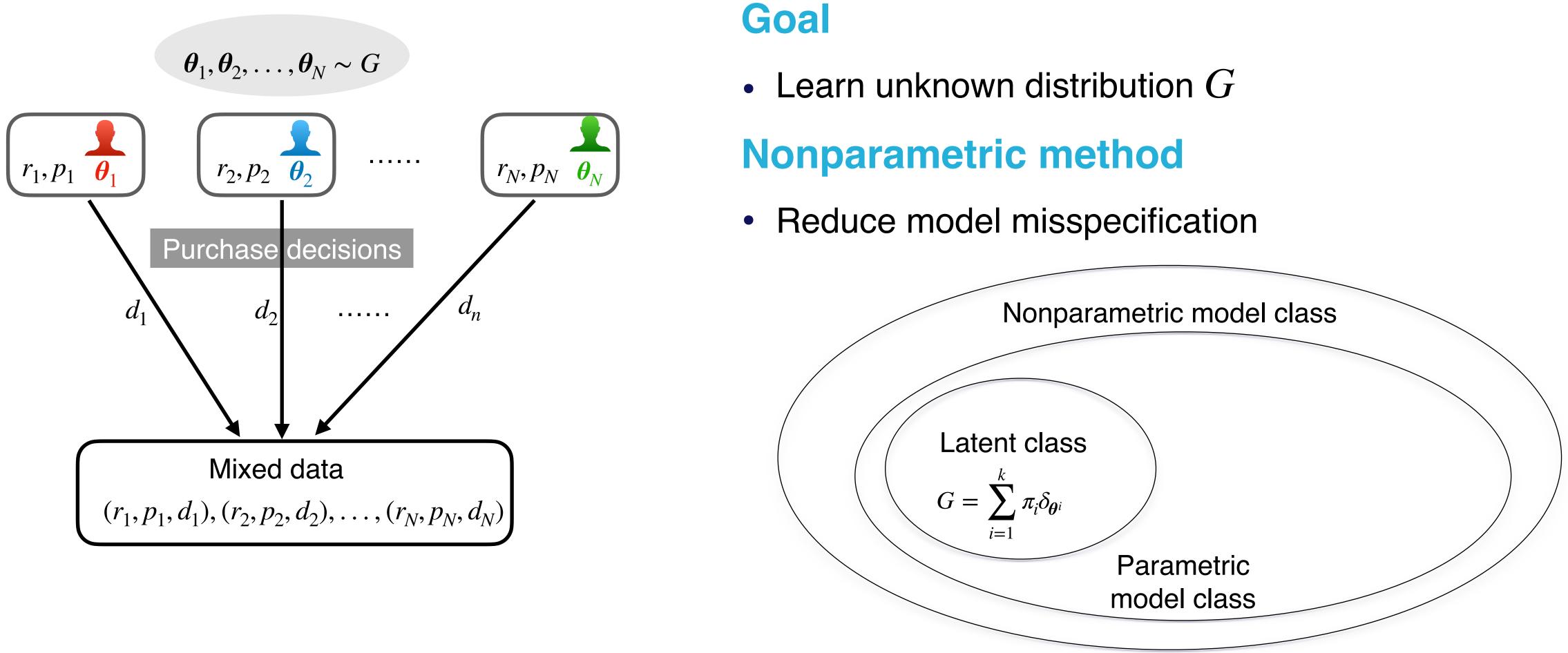
Nonparametric method

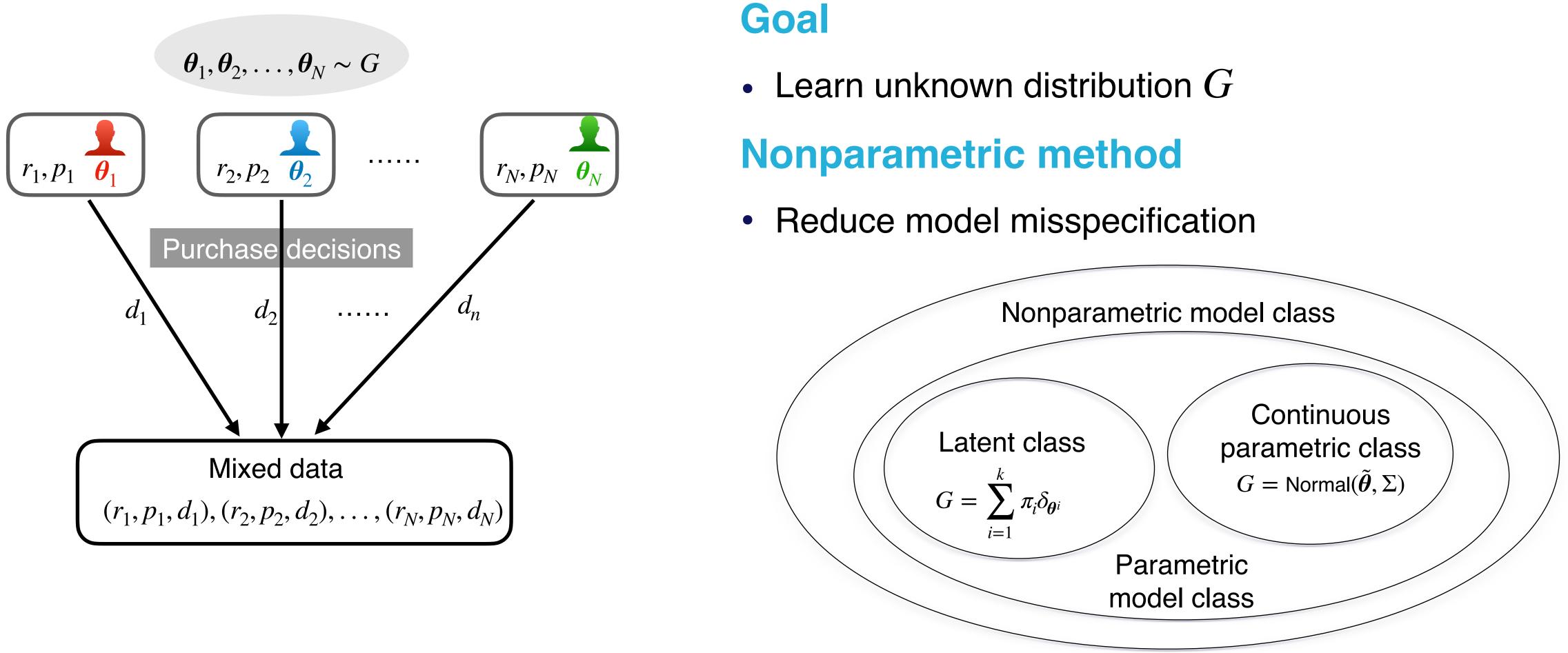
Reduce model misspecification

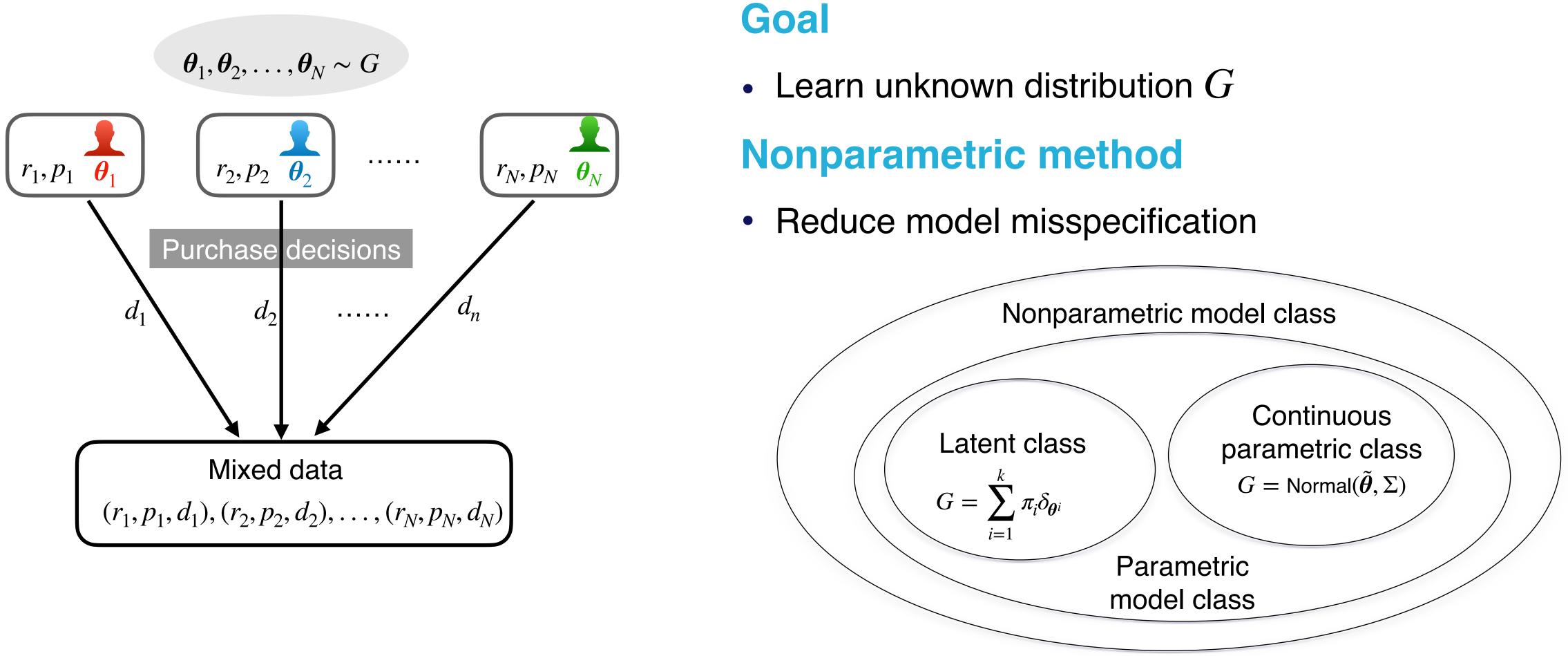




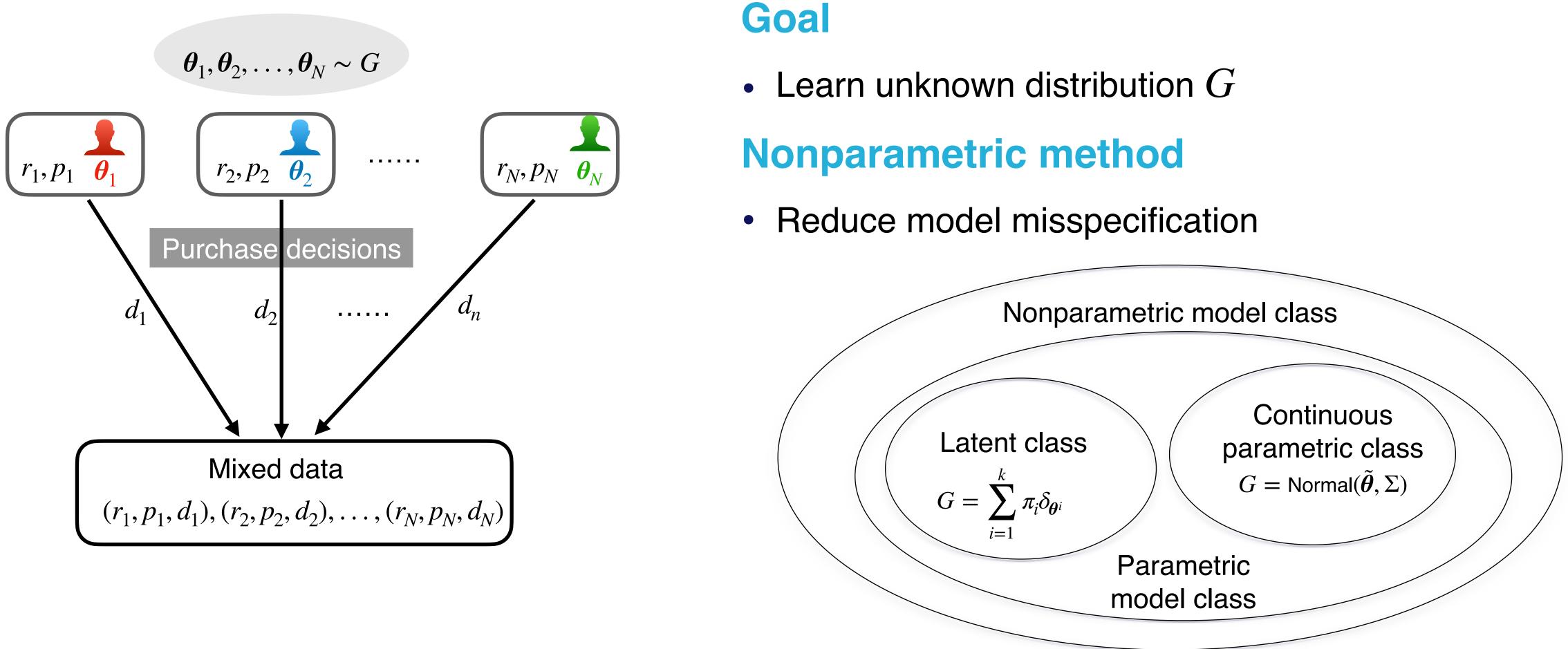








Our proposal



Our proposal

Nonparametric maximum likelihood estimator (NPMLE)

"A Nonparametric Maximum Likelihood Approach to Mixture of Regression." R&R at Journal of the American Statistical Association. **H. Jiang**, A. Guntuboyina.

• Likelihood $\mathscr{L}_n = d_n \mathbf{P}^G(r_n, p_n) + (1 - d_n)(1 - \mathbf{P}^G(r_n, p_n))$

"A Nonparametric Maximum Likelihood Approach to Mixture of Regression." R&R at Journal of the American Statistical Association. H. Jiang, A. Guntuboyina.

- Likelihood $\mathscr{L}_n = d_n \mathbf{P}^G(r_n, p_n) + (1 d_n)(1 \mathbf{P}^G(r_n, p_n))$
- Total log likelihood is

"A Nonparametric Maximum Likelihood Approach to Mixture of Regression." R&R at Journal of the American Statistical Association. H. Jiang, A. Guntuboyina.

- Likelihood $\mathscr{L}_n = d_n \mathbf{P}^G(r_n, p_n) + (1 d_n)(1 \mathbf{P}^G(r_n, p_n))$
- Total log likelihood is

 $\ell = \sum_{n=1}^{N} \log \mathscr{L}_n$

n=1

- Likelihood $\mathscr{L}_n = d_n P^G(r_n, p_n) + (1 d_n)(1 P^G(r_n, p_n))$
- Total log likelihood is

"A Nonparametric Maximum Likelihood Approach to Mixture of Regression." R&R at Journal of the American Statistical Association. H. Jiang, A. Guntuboyina.

 $\ell = \sum_{n=1}^{N} \log \mathscr{L}_n$

n=1

An NPMLE maximizes ℓ over all possible probability distributions

- Likelihood $\mathscr{L}_n = d_n P^G(r_n, p_n) + (1 d_n)(1 P^G(r_n, p_n))$
- Total log likelihood is

Literature

"A Nonparametric Maximum Likelihood Approach to Mixture of Regression." R&R at Journal of the American Statistical Association. H. Jiang, A. Guntuboyina.

 $\ell = \sum_{n=1}^{N} \log \mathscr{L}_{n}$

n=1

An NPMLE maximizes ℓ over all possible probability distributions

- Likelihood $\mathscr{L}_n = d_n P^G(r_n, p_n) + (1 d_n)(1 P^G(r_n, p_n))$
- Total log likelihood is

- Literature
 - Long history of NPMLE [J. Kiefer, J. Wolfowitz (1956)]

"A Nonparametric Maximum Likelihood Approach to Mixture of Regression." R&R at Journal of the American Statistical Association. H. Jiang, A. Guntuboyina.

 $\ell = \sum_{n=1}^{N} \log \mathscr{L}_n$

n=1

An NPMLE maximizes ℓ over all possible probability distributions

- Likelihood $\mathscr{L}_n = d_n P^G(r_n, p_n) + (1 d_n)(1 P^G(r_n, p_n))$
- Total log likelihood is

- Literature
 - Long history of NPMLE [J. Kiefer, J. Wolfowitz (1956)]

"A Nonparametric Maximum Likelihood Approach to Mixture of Regression." R&R at Journal of the American Statistical Association. H. Jiang, A. Guntuboyina.

 $\ell = \sum_{n=1}^{N} \log \mathscr{L}_n$

n=1

An NPMLE maximizes ℓ over all possible probability distributions

• Non-asymptotic guarantees under Gaussian-noise regression models [H. Jiang, A. Guntuboyina (2021)]

- Likelihood $\mathscr{L}_n = d_n P^G(r_n, p_n) + (1 d_n)(1 P^G(r_n, p_n))$
- Total log likelihood is

- Literature
 - Long history of NPMLE [J. Kiefer, J. Wolfowitz (1956)]

Observation: \mathscr{C} is concave with respect to likelihood vectors $\mathbf{f} = (\mathscr{L}_1, \dots, \mathscr{L}_N)$

"A Nonparametric Maximum Likelihood Approach to Mixture of Regression." R&R at Journal of the American Statistical Association. H. Jiang, A. Guntuboyina.

 $\ell = \sum_{n=1}^{n} \log \mathscr{L}_n$

n=1

An NPMLE maximizes ℓ over all possible probability distributions

• Non-asymptotic guarantees under Gaussian-noise regression models [H. Jiang, A. Guntuboyina (2021)]

Theorem (informal) NPMLEs exist and there exists an NPMLE that is supported on at most *N* components.

Theorem (informal) NPMLEs exist and there exists an NPMLE that is supported on at most N components.

Convexity

Theorem (informal) NPMLEs exist and there exists an NPMLE that is supported on at most *N* components.

Convexity

Caratheodary theorem

Theorem (informal)

Convexity

NPMLEs exist and there exists an NPMLE that is supported on at most N components.

Caratheodary theorem

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)

Theorem (informal)

Convexity

- - Provable convergence guarantees

NPMLEs exist and there exists an NPMLE that is supported on at most N components.

Caratheodary theorem

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)

Theorem (informal)

Convexity

- - Provable convergence guarantees
 - Adaptively adding new component to mixture

NPMLEs exist and there exists an NPMLE that is supported on at most N components.

Caratheodary theorem

Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)

Theorem (informal)

Convexity

- - Provable convergence guarantees
 - Adaptively adding new component to mixture
- **Algorithm illustration:**

NPMLEs exist and there exists an NPMLE that is supported on at most N components.

Caratheodary theorem

Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)

Theorem (informal)

Convexity

- - Provable convergence guarantees
 - Adaptively adding new component to mixture
- **Algorithm illustration:**

Find new consumer segment

NPMLEs exist and there exists an NPMLE that is supported on at most N components.

Caratheodary theorem

• Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)

Theorem (informal)

Convexity

- - Provable convergence guarantees
 - Adaptively adding new component to mixture
- **Algorithm illustration:**

Find new consumer segment

NPMLEs exist and there exists an NPMLE that is supported on at most N components.

Caratheodary theorem

Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)

Re-optimize likelihood over new support set

Theorem (informal)

Convexity

- - Provable convergence guarantees
 - Adaptively adding new component to mixture
- **Algorithm illustration:**

Find new consumer segment

NPMLEs exist and there exists an NPMLE that is supported on at most N components.

Caratheodary theorem

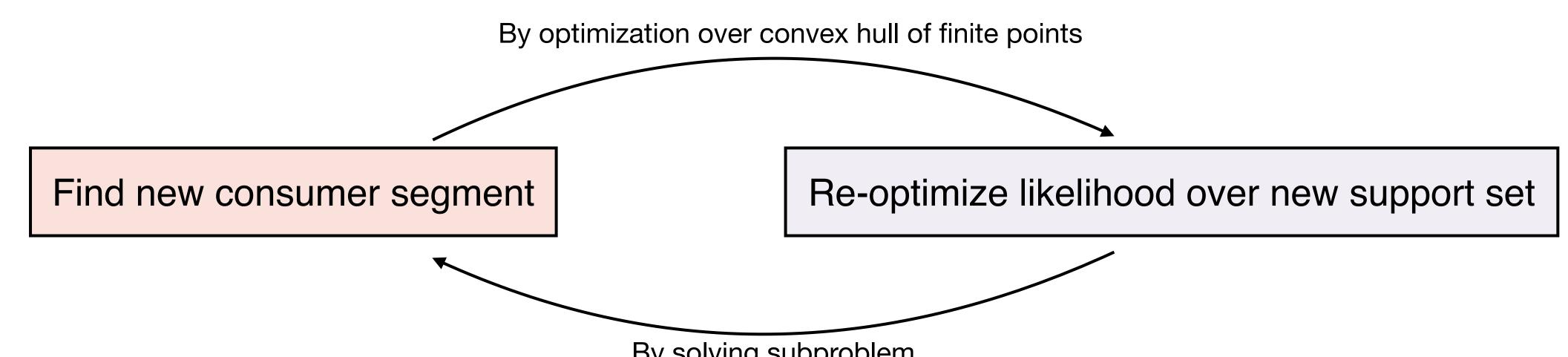
Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)

Re-optimize likelihood over new support set

By solving subproblem

Theorem (informal) NPMLEs exist and there exists an NPMLE that is supported on at most N components.

- - Provable convergence guarantees
 - Adaptively adding new component to mixture
- **Algorithm illustration:**



Caratheodary theorem

Convex optimization framework — Conditional Gradient Method (aka Frank-Wolfe)

By solving subproblem

Contributions

Formulate the heterogeneous consumer reference effects model in the individual level

Propose a nonparametric statistical method for extracting consumer heterogeneity from transaction data

Provide computational algorithm for optimal pricing policies and establish the sub-optimality of constant policies

Apply to real-world data from retailing platform JD.com and show that the proposed approach leads to significant improvement in revenue

• Update of reference price

• Update of reference price

• Reference price follows exponential smoothing scheme

• Update of reference price

• Reference price follows exponential smoothing scheme

$$r_t = (1 - \alpha) p_{t-1}$$

• Update of reference price

• Reference price follows exponential smoothing scheme

$$r_t = (1 - \alpha)p_{t-1}$$

• $\alpha \in [0,1]$ — memory parameter

• Update of reference price

• Reference price follows exponential smoothing scheme

$$r_t = (1 - \alpha)p_{t-1}$$

- $\alpha \in [0,1]$ memory parameter
- Long-term discounted revenue

Update of reference price

• Reference price follows exponential smoothing scheme

$$r_t = (1 - \alpha)p_{t-1}$$

• $\alpha \in [0,1]$ — memory parameter

Long-term discounted revenue

• Under price sequence $\{p_t\}_{t=1}^{\infty}$, the platform's long-term discounted revenue is

 $+\alpha r_{t-1}$

Update of reference price

• Reference price follows exponential smoothing scheme

$$r_t = (1 - \alpha)p_{t-1}$$

• $\alpha \in [0,1]$ — memory parameter

Long-term discounted revenue

• Under price sequence $\{p_t\}_{t=1}^{\infty}$, the platform's long-term discounted revenue is

$$V(r_0) = \sum_{t=1}^{\infty} \beta^t p_t \cdot \mathbf{P}^G(r_t, p_t)$$

 $+\alpha r_{t-1}$

Update of reference price

• Reference price follows exponential smoothing scheme

$$r_t = (1 - \alpha)p_{t-1}$$

• $\alpha \in [0,1]$ — memory parameter

Long-term discounted revenue

• Under price sequence $\{p_t\}_{t=1}^{\infty}$, the platform's long-term discounted revenue is

$$V(r_0) = \sum_{t=1}^{\infty} \beta^t p_t \cdot \mathbf{P}^G(r_t, p_t)$$

• $\beta \in [0,1]$ — discount factor

 $+\alpha r_{t-1}$

Update of reference price

• Reference price follows exponential smoothing scheme

$$r_t = (1 - \alpha)p_{t-1}$$

• $\alpha \in [0,1]$ — memory parameter

Long-term discounted revenue

• Under price sequence $\{p_t\}_{t=1}^{\infty}$, the platform's long-term discounted revenue is

$$V(r_0) = \sum_{t=1}^{\infty} \beta^t p_t \cdot \mathbf{P}^G(r_t, p_t)$$

t=1

- $\beta \in [0,1]$ discount factor
- Platform's pricing objective

 $+\alpha r_{t-1}$

Update of reference price

Reference price follows exponential smoothing scheme

$$r_t = (1 - \alpha)p_{t-1}$$

• $\alpha \in [0,1]$ — memory parameter

Long-term discounted revenue

• Under price sequence $\{p_t\}_{t=1}^{\infty}$, the platform's long-term discounted revenue is

$$V(r_0) = \sum_{t=1}^{\infty} \beta^t p_t$$

t=1

• $\beta \in [0,1]$ — discount factor

Platform's pricing objective

• Find the price sequence $\{p_t\}_{t=1}^{\infty}$ that maximizes the long-term discounted revenue

•
$$\mathbf{P}^{G}(r_t, p_t)$$

• Pricing under reference effects [I. Popescu and Y. Wu (2007)] [Z. Hu, X. Chen, P. Hu (2016)] [X. Chen, P. Hu, Z. Hu(2017)] [N. Chen, J. Nasiry (2020)]

- Z. Hu(2017)] [N. Chen, J. Nasiry (2020)]

Pricing under reference effects [I. Popescu and Y. Wu (2007)] [Z. Hu, X. Chen, P. Hu (2016)] [X. Chen, P. Hu,

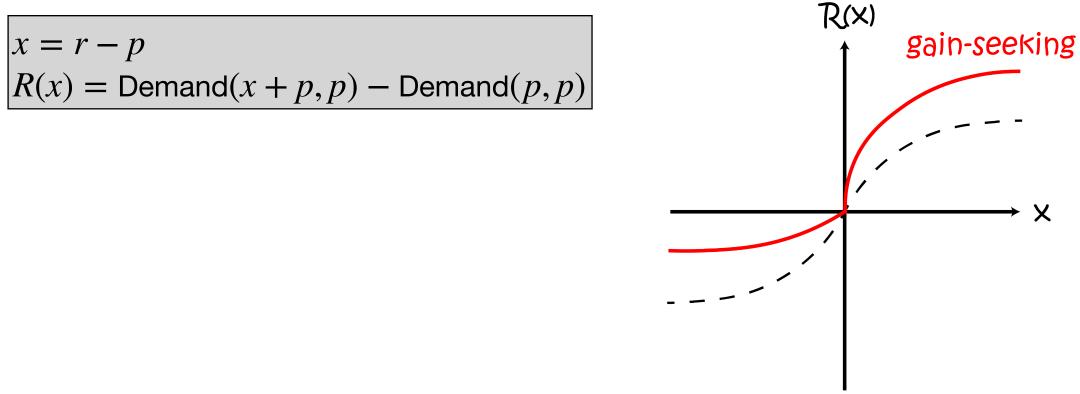
• Demand is modeled at the aggregate level with several assumptions [I. Popescu and Y. Wu (2007)]

- Z. Hu(2017)] [N. Chen, J. Nasiry (2020)]
- Structural analysis of optimal pricing policies

Pricing under reference effects [I. Popescu and Y. Wu (2007)] [Z. Hu, X. Chen, P. Hu (2016)] [X. Chen, P. Hu,

• Demand is modeled at the aggregate level with several assumptions [I. Popescu and Y. Wu (2007)]

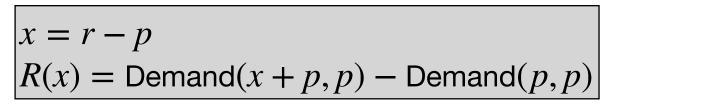
- Z. Hu(2017)] [N. Chen, J. Nasiry (2020)]
 - Demand is modeled at the aggregate level with several assumptions [I. Popescu and Y. Wu (2007)] 0
- Structural analysis of optimal pricing policies
 - Cyclic pricing policy is optimal if only gain-seeking consumers

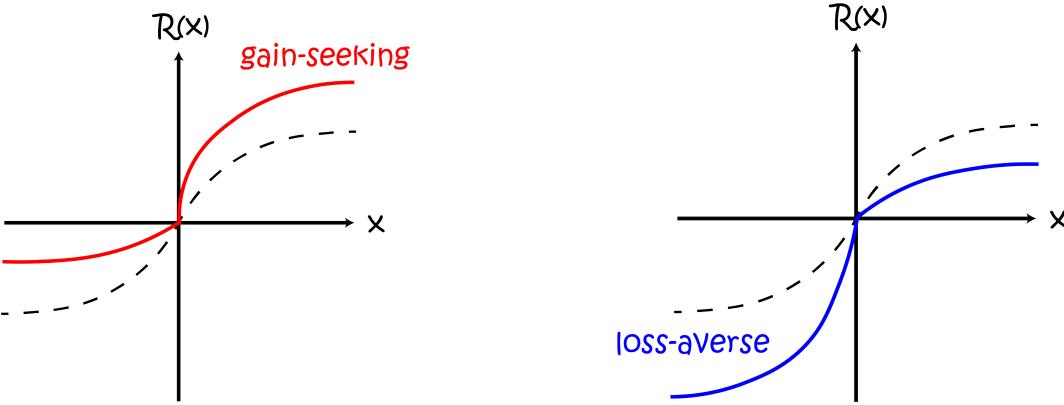


Pricing under reference effects [I. Popescu and Y. Wu (2007)] [Z. Hu, X. Chen, P. Hu (2016)] [X. Chen, P. Hu,

- X

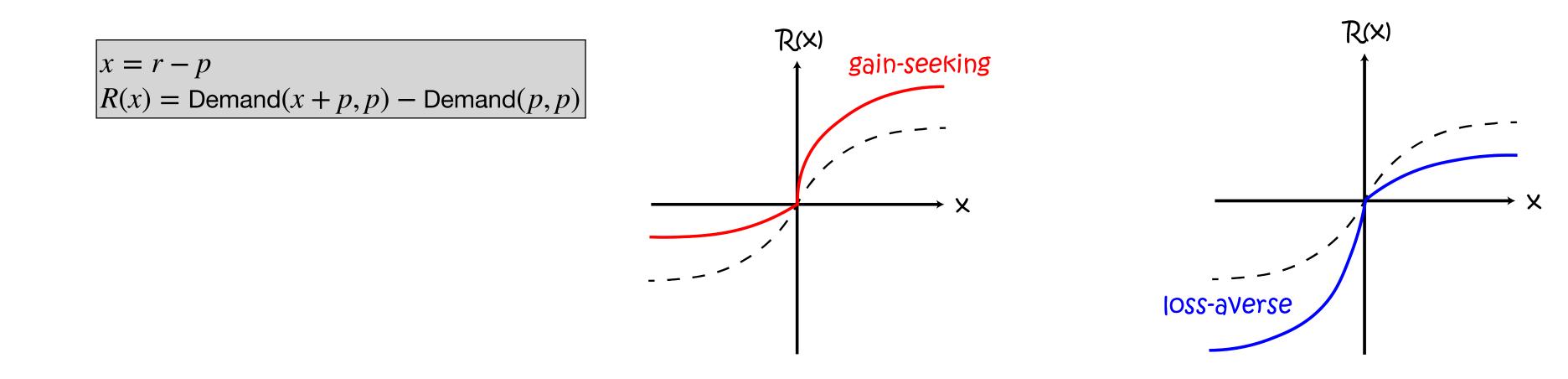
- Z. Hu(2017)] [N. Chen, J. Nasiry (2020)]
 - Demand is modeled at the aggregate level with several assumptions [I. Popescu and Y. Wu (2007)] 0
- Structural analysis of optimal pricing policies
 - Cyclic pricing policy is optimal if only gain-seeking consumers
 - Constant pricing policy is optimal if only loss-averse consumers





Pricing under reference effects [I. Popescu and Y. Wu (2007)] [Z. Hu, X. Chen, P. Hu (2016)] [X. Chen, P. Hu,

- Z. Hu(2017)] [N. Chen, J. Nasiry (2020)]
 - Demand is modeled at the aggregate level with several assumptions [I. Popescu and Y. Wu (2007)] 0
- Structural analysis of optimal pricing policies
 - Cyclic pricing policy is optimal if only gain-seeking consumers
 - Constant pricing policy is optimal if only loss-averse consumers



Question: do similar pricing structures hold in our individual consumer model?

Pricing under reference effects [I. Popescu and Y. Wu (2007)] [Z. Hu, X. Chen, P. Hu (2016)] [X. Chen, P. Hu,

Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is **not** optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is **not** optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

averse consumers!

Implications: Constant pricing policy can be sub-optimal in the presence of loss-

Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is **not** optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

averse consumers!

Loss-averse consumers

Implications: Constant pricing policy can be sub-optimal in the presence of loss-

Constant optimal pricing policy

Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is **not** optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

averse consumers!

Loss-averse consumers

Implications: Constant pricing policy can be sub-optimal in the presence of loss-

Optimizing Long-Term Revenue

Optimizing Long-Term Revenue

• View as dynamic programming

• View as dynamic programming

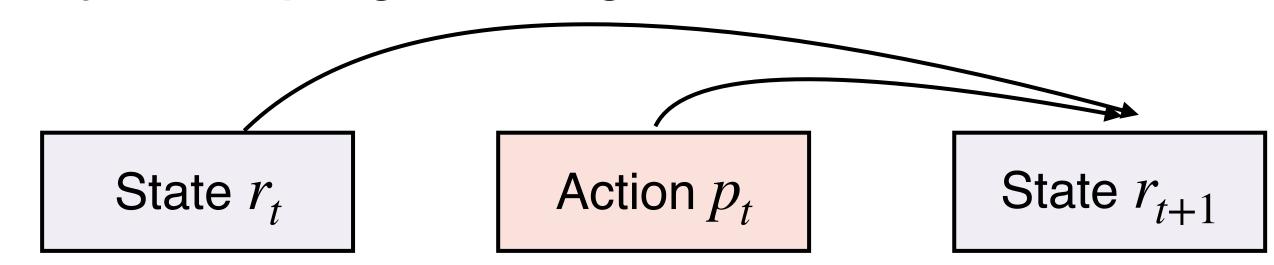
State r_t

• View as dynamic programming

State r_t

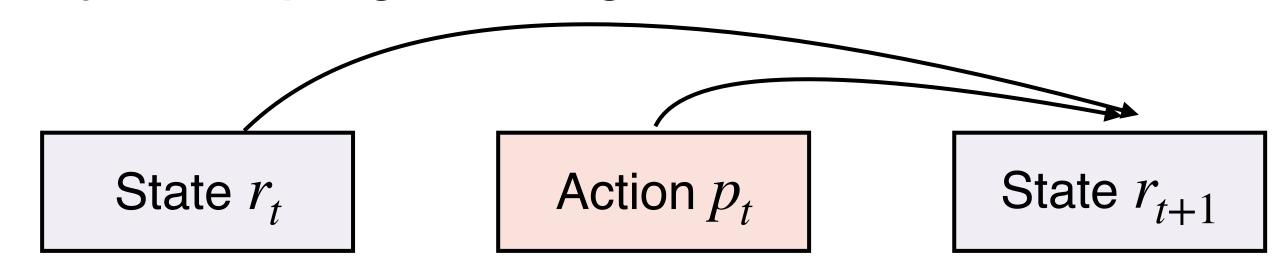
Action p_t

• View as dynamic programming



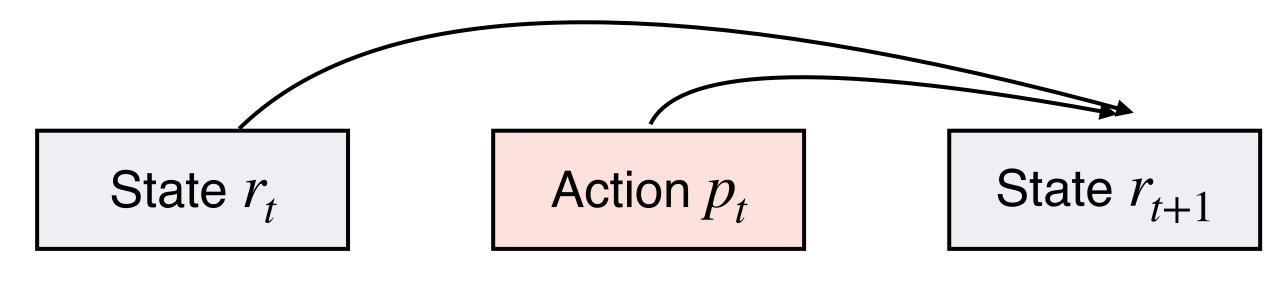


• View as dynamic programming



Hansheng Jiang (University of Toronto) 20

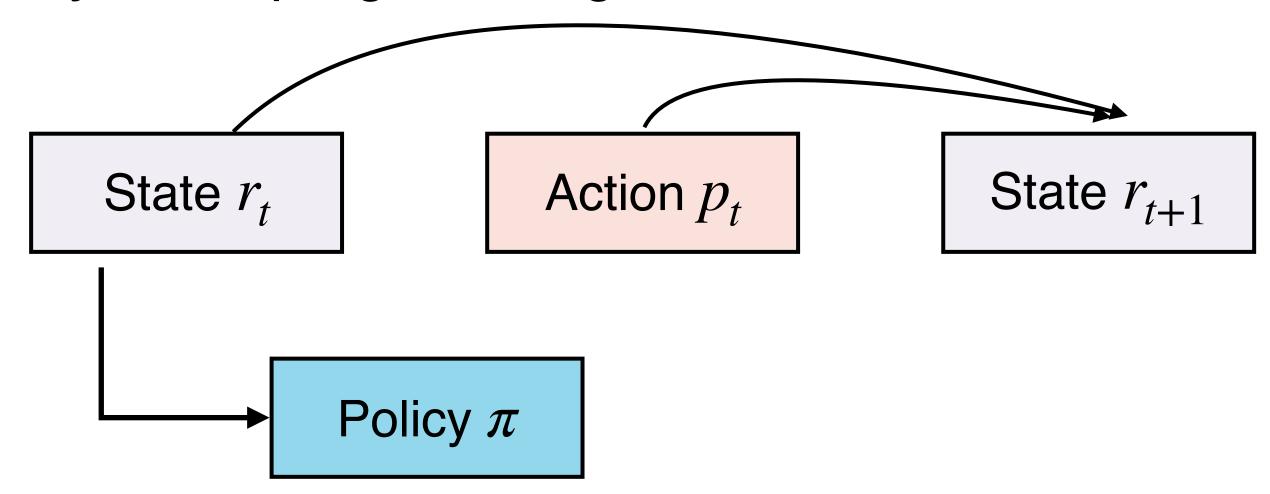
• View as dynamic programming



Policy π

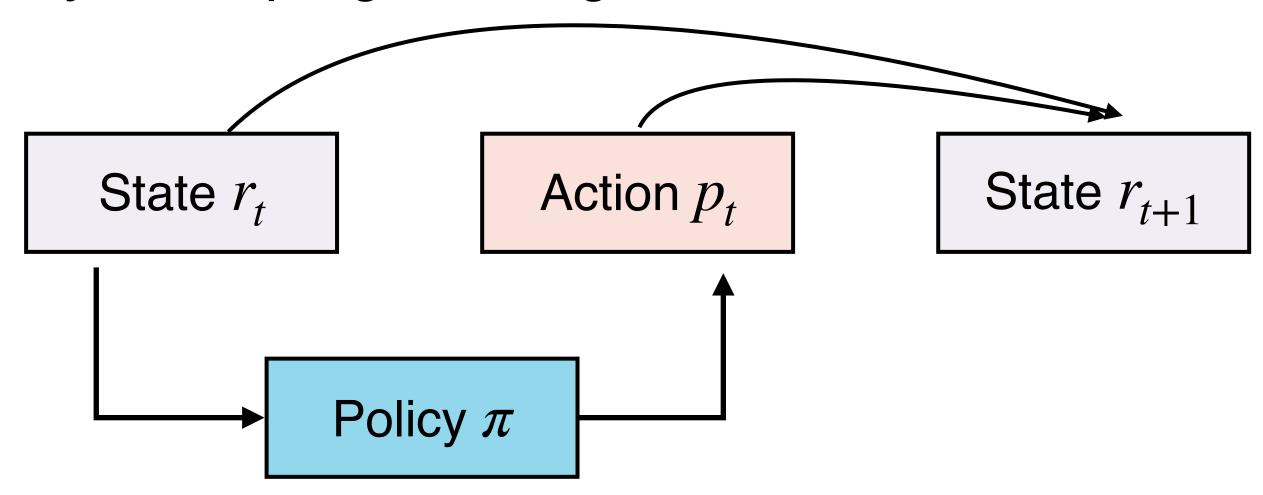
Hansheng Jiang (University of Toronto) 20

• View as dynamic programming



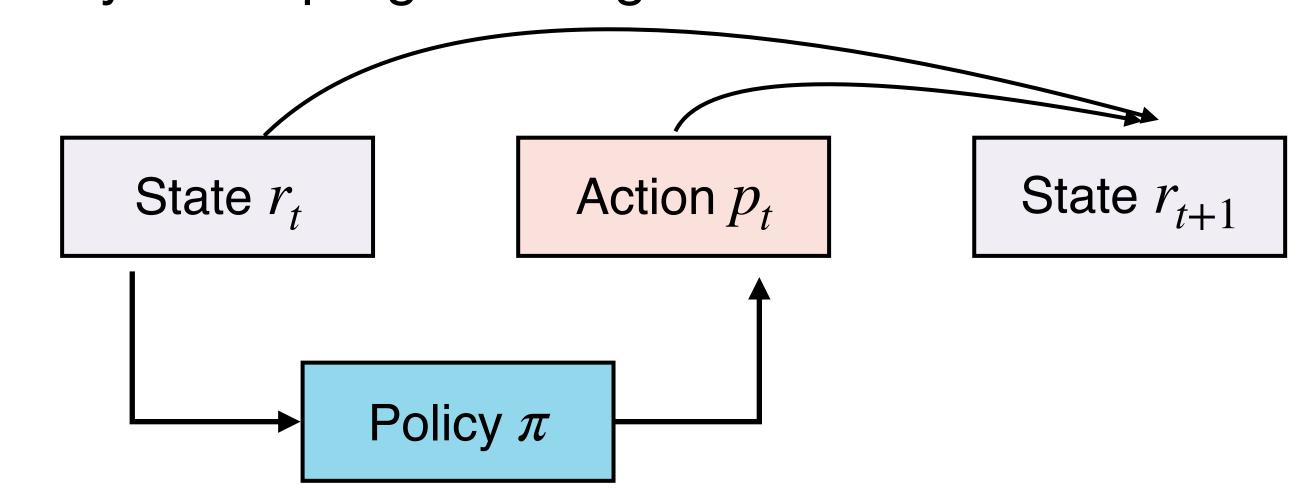
Hansheng Jiang (University of Toronto) 20

• View as dynamic programming



Hansheng Jiang (University of Toronto) 20

• View as dynamic programming

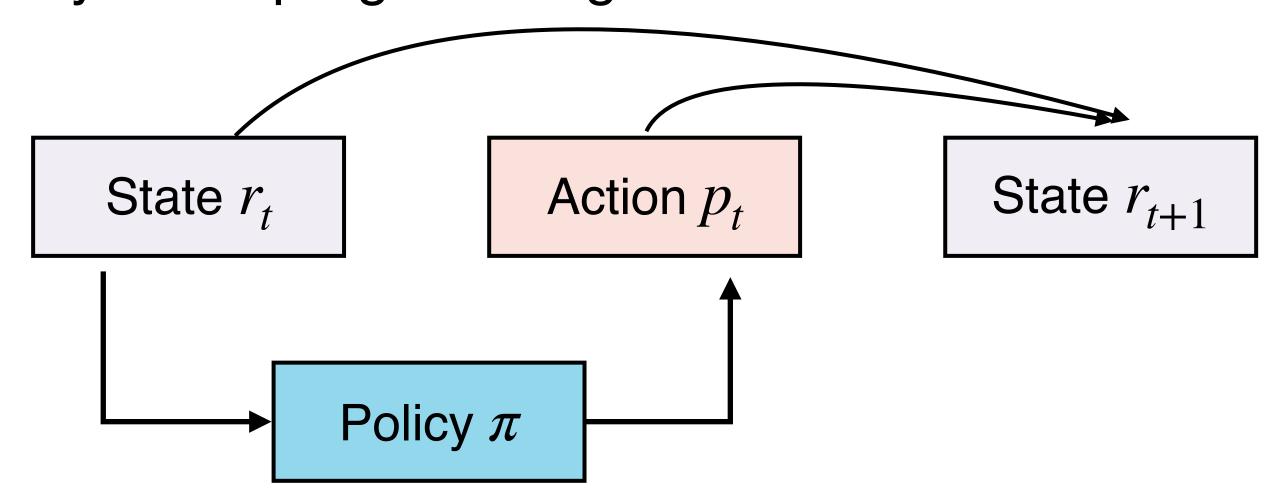


• Value function: long-term discounted revenue

Hansheng Jiang (University of Toronto) 20



View as dynamic programming



• Value function: long-term discounted revenue

Theorem (Discretization guarantee, informal) The difference of the optimal long-term discounted revenue and its counterpart under discretization is bounded by

$$0 \le V^\star(r) - V$$

 $V_{\epsilon}^{\star}(r) \leq O(\epsilon)$.



$$V(r_0) = \max_{\{p_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^t p_t \mathbf{P}^G(r_t, p_t)$$

$$V(r_0) = \max_{\{p_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^t p_t P^G(r_t, p_t)$$

s.t. $r_t = (1 - \alpha)p_{t-1} + \alpha r_{t-1}$

$$V(r_0) = \max_{\{p_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^t p_t P^G(r_t, p_t)$$

s.t. $r_t = (1 - \alpha)p_{t-1} + \alpha r_{t-1}$
 $p_t \in \mathscr{P}_{\epsilon}(r_t)$

Pricing Optimization

$$V(r_0) = \max_{\{p_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^t p_t P^G(r_t, p_t)$$

s.t. $r_t = (1 - \alpha)p_{t-1} + \alpha r_{t-1}$
 $p_t \in \mathscr{P}_{\epsilon}(r_t)$

Modified policy iteration algorithm

Initialize $V^0 = 0, k = 1$

Pricing Optimization

$$V(r_0) = \max_{\{p_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^t p_t P^G(r_t, p_t)$$

s.t. $r_t = (1 - \alpha)p_{t-1} + \alpha r_{t-1}$
 $p_t \in \mathscr{P}_{\epsilon}(r_t)$

Modified policy iteration algorithm

Initialize V Repeat

Initialize $V^0 = 0, k = 1$

Pricing Optimization

$$V(r_0) = \max_{\{p_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^t p_t P^G(r_t, p_t)$$

s.t. $r_t = (1 - \alpha)p_{t-1} + \alpha r_{t-1}$
 $p_t \in \mathscr{P}_{\epsilon}(r_t)$

Modified policy iteration algorithm

Initialize VRepeat

$$y^0 = 0, k = 1$$

Policy improvement

Generate new pricing policy π_k based on value function V^{k-1}

Pricing Optimization

$$V(r_0) = \max_{\{p_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^t p_t \mathbf{P}^G(r_t, p_t)$$

s.t. $r_t = (1 - \alpha)p_{t-1} + \alpha r_{t-1}$
 $p_t \in \mathscr{P}_{\epsilon}(r_t)$

Modified policy iteration algorithm

Initialize VRepeat

$$y^0 = 0, k = 1$$

Policy improvement

Generate new pricing policy π_k based on value function V^{k-1} **Approximate policy evaluation** Calculate the value function V^k according to policy π_k

Pricing Optimization

$$V(r_0) = \max_{\{p_t\}_{t=1}^{\infty}} \sum_{t=1}^{\infty} \beta^t p_t P^G(r_t, p_t)$$

s.t. $r_t = (1 - \alpha) p_{t-1} + \alpha r_{t-1}$
 $p_t \in \mathscr{P}_{\epsilon}(r_t)$

Modified policy iteration algorithm

Initialize VRepeat $k \leftarrow k + 1$

$$y^0 = 0, k = 1$$

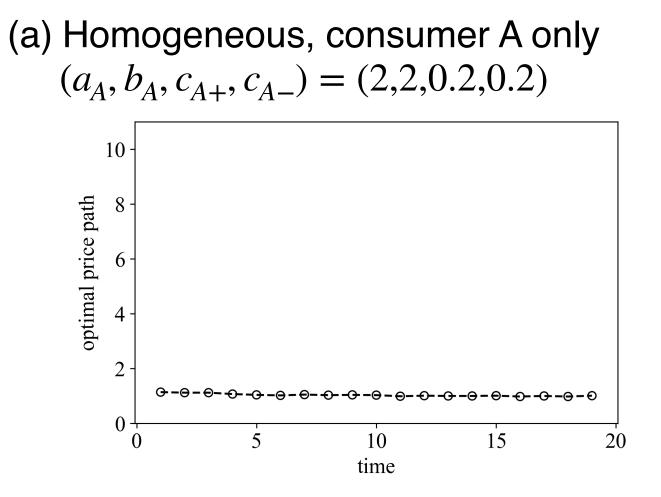
Policy improvement

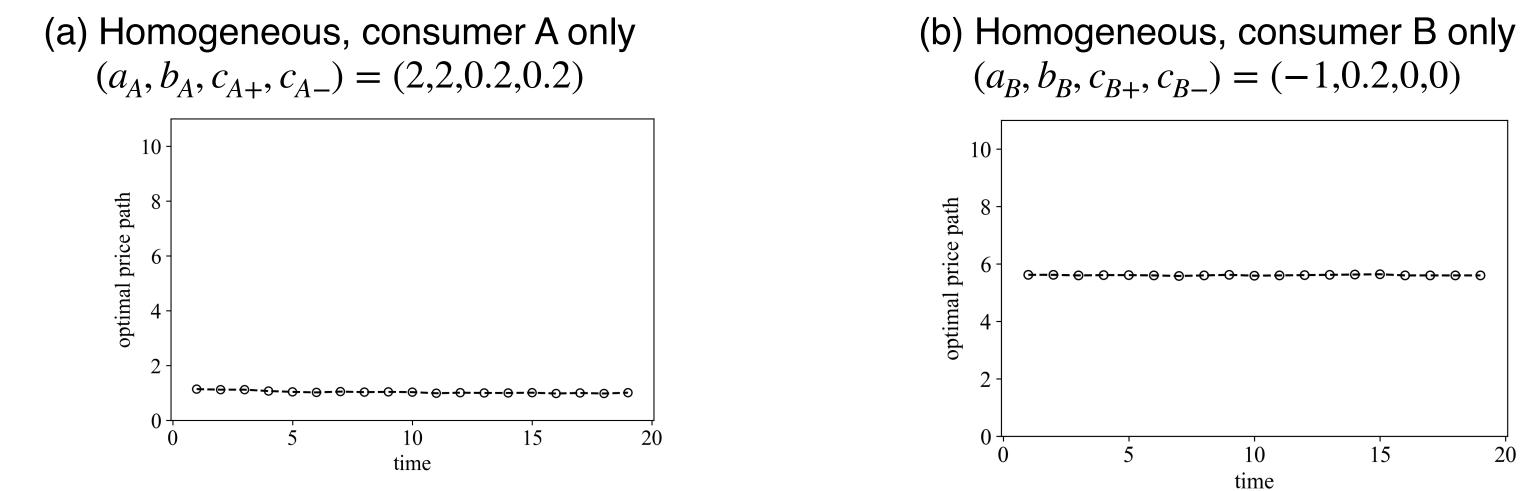
Generate new pricing policy π_k based on value function V^{k-1}

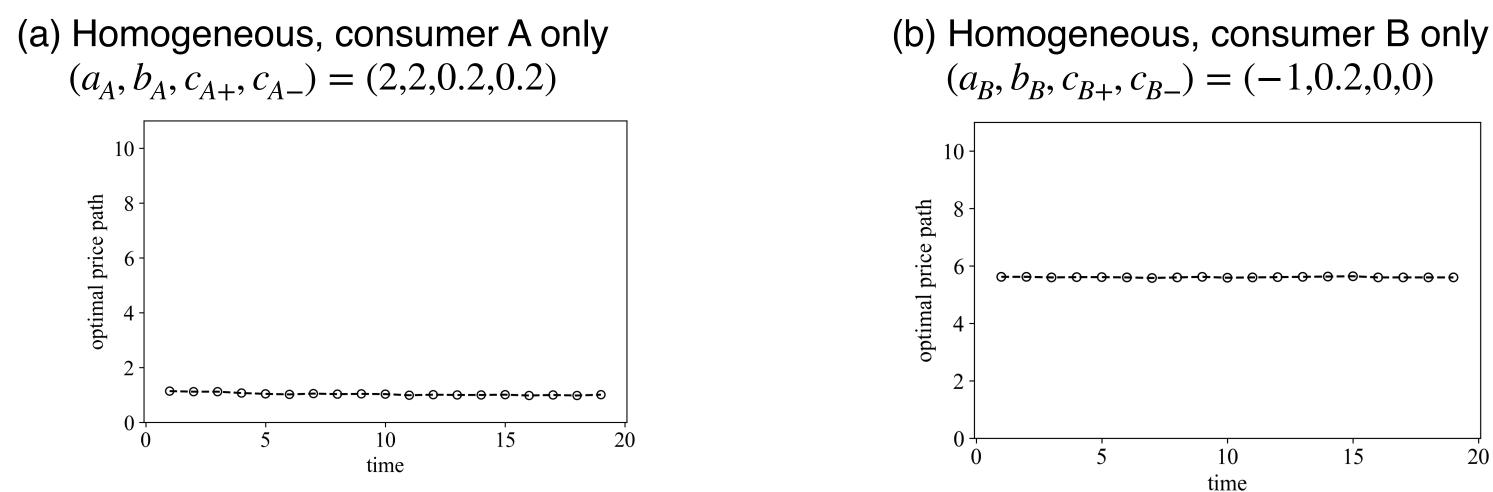
Approximate policy evaluation

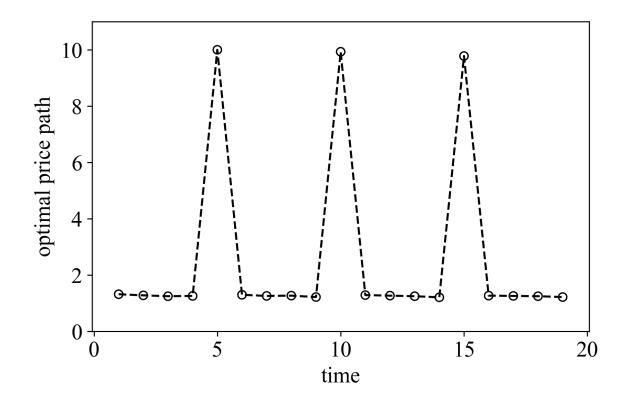
Calculate the value function V^k according to policy π_k

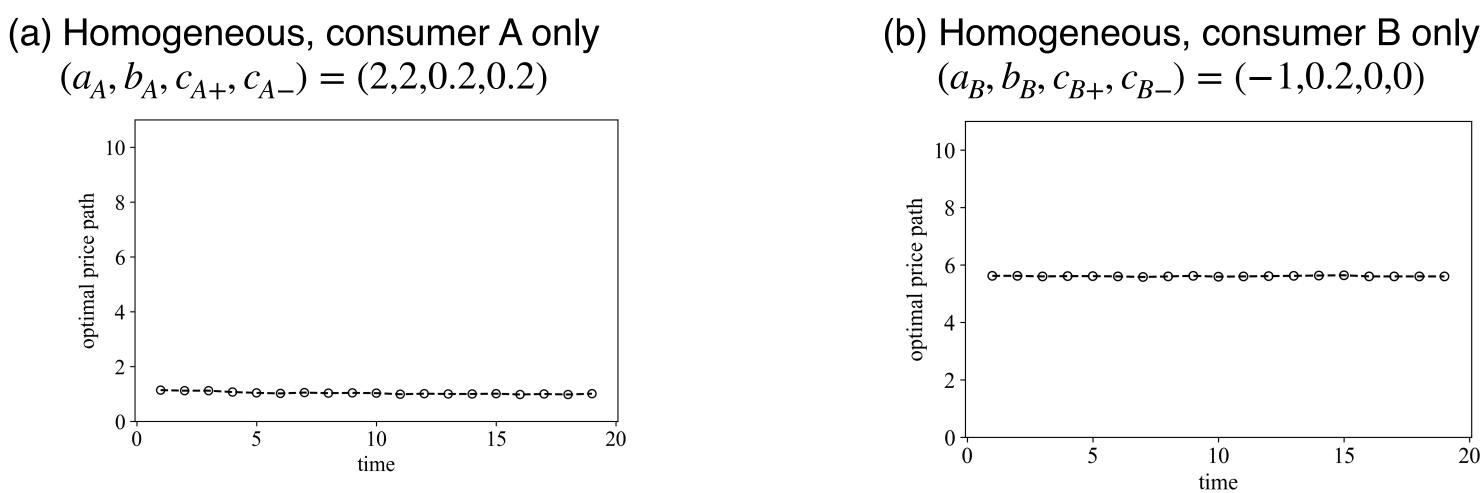
Until convergence

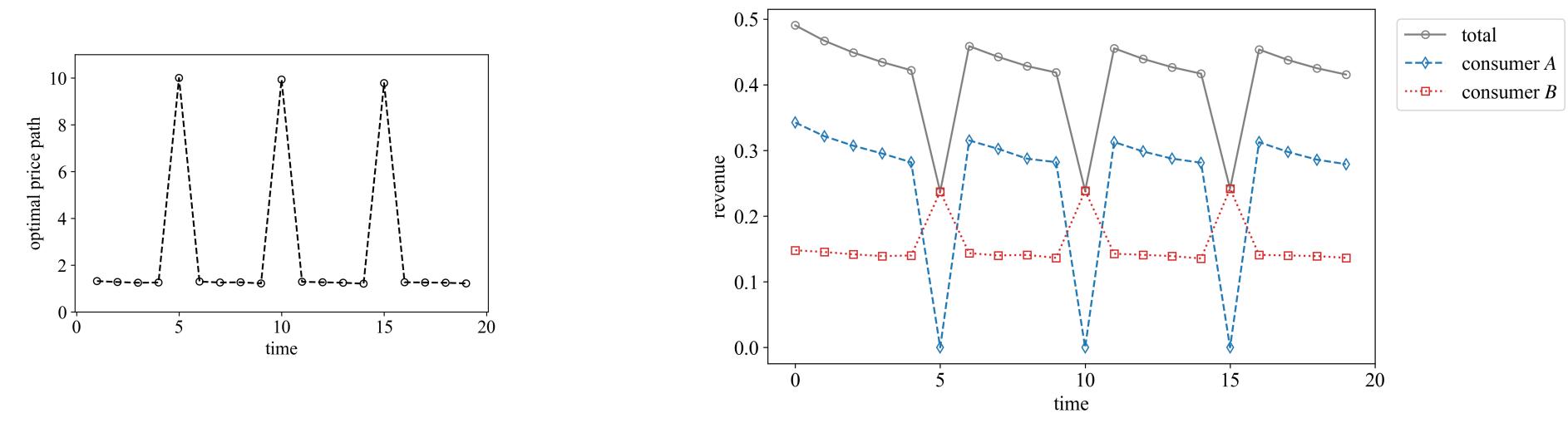






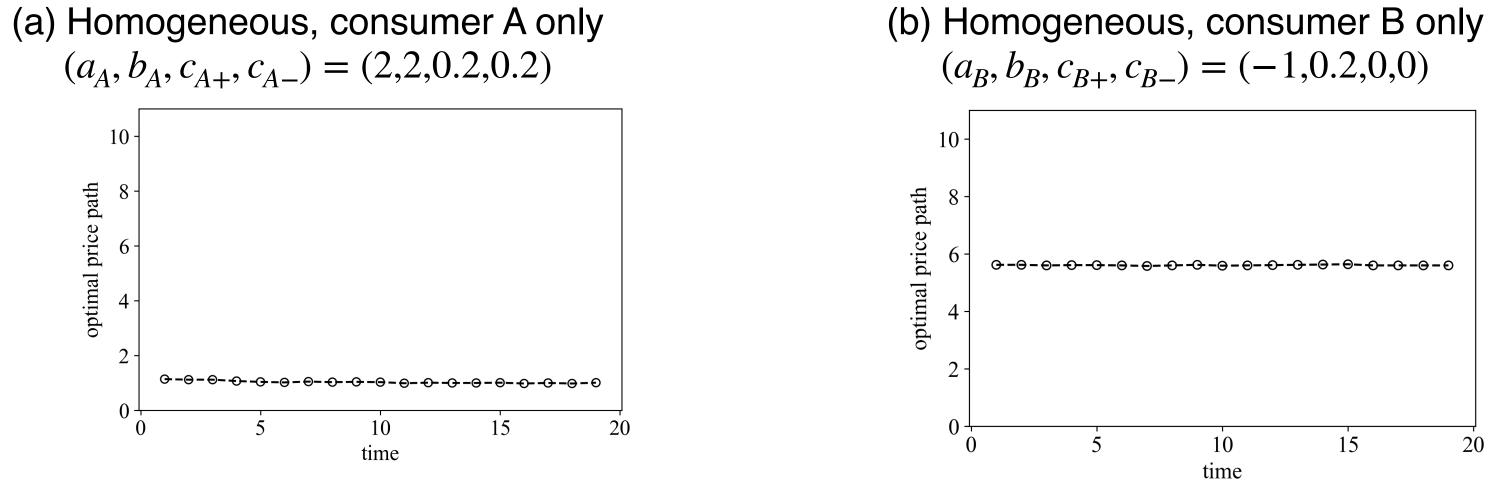


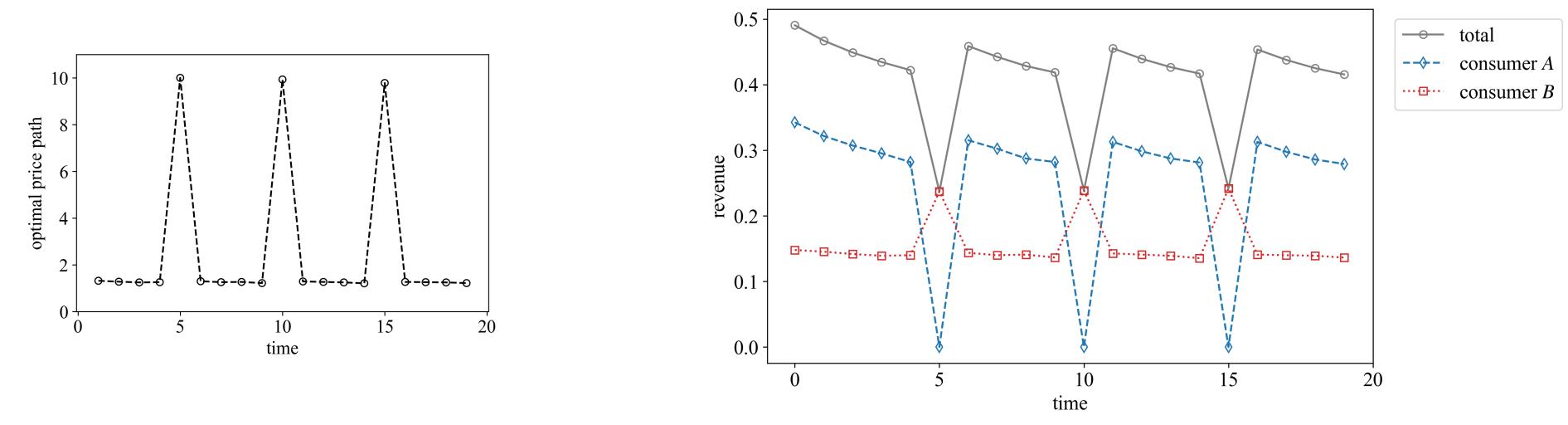




(d) Per period revenue

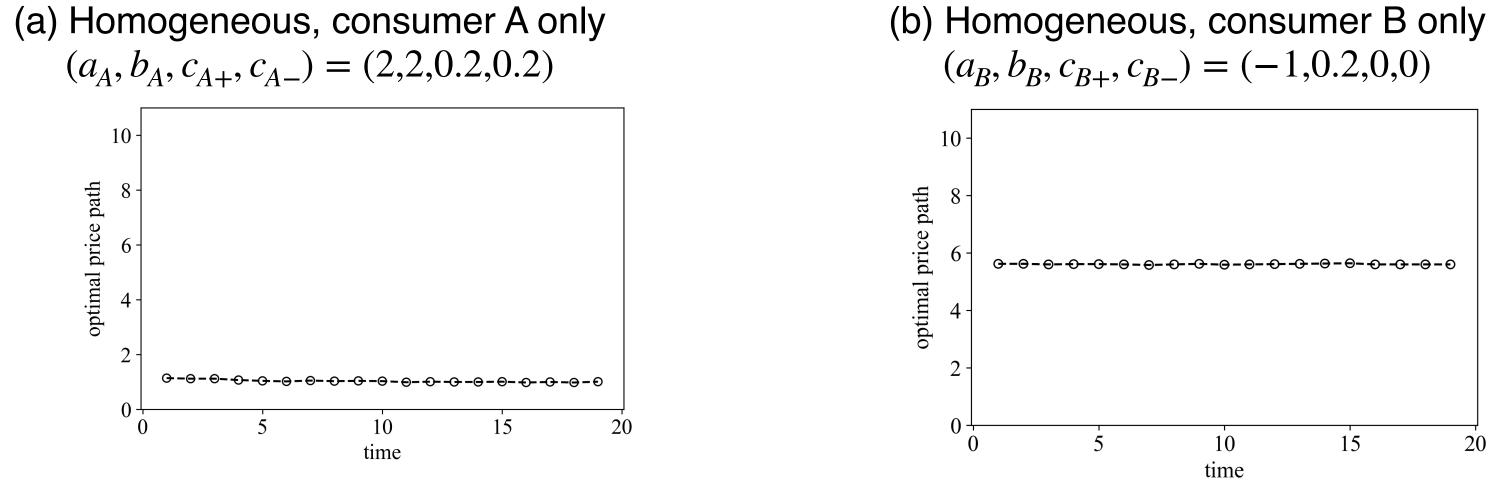
Constant optimal pricing + constant optimal pricing \neq constant optimal pricing

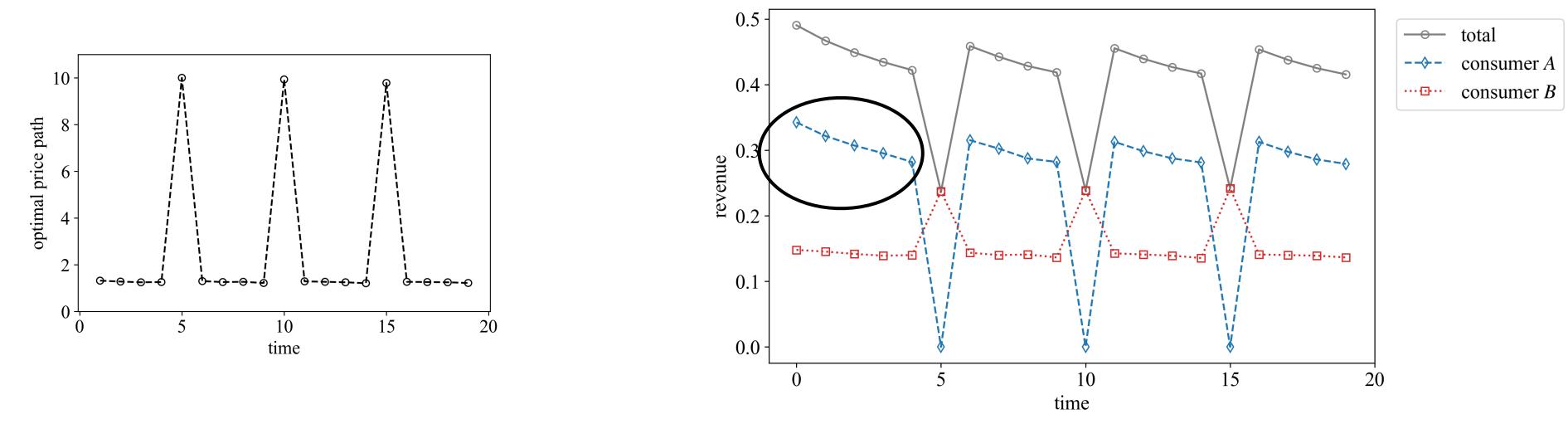




(d) Per period revenue

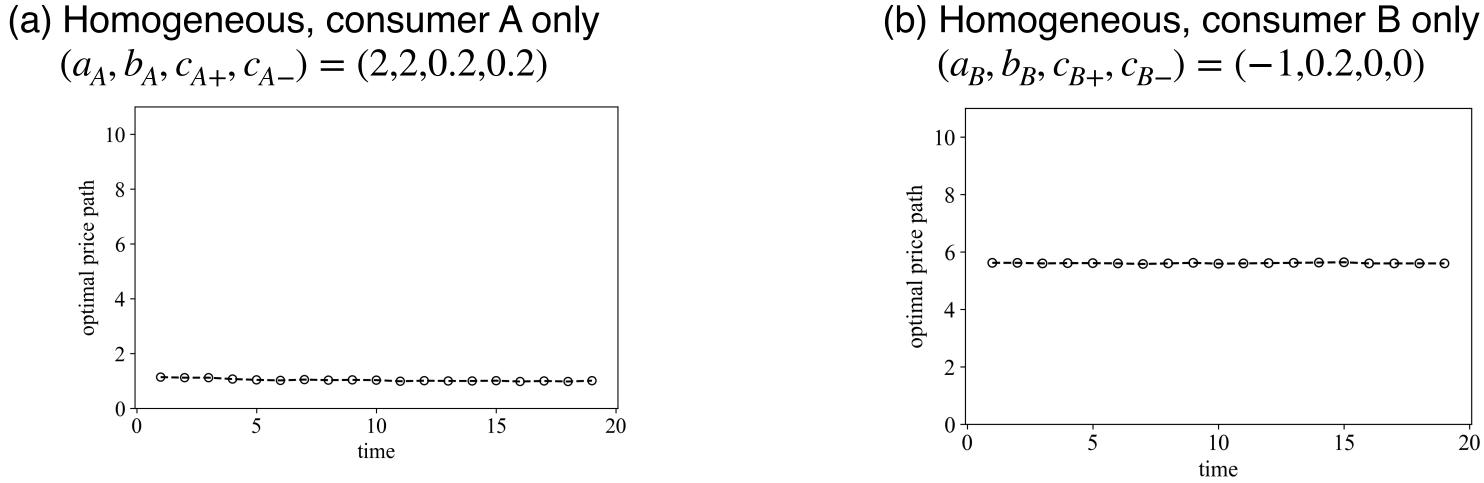
Constant optimal pricing + constant optimal pricing \neq constant optimal pricing

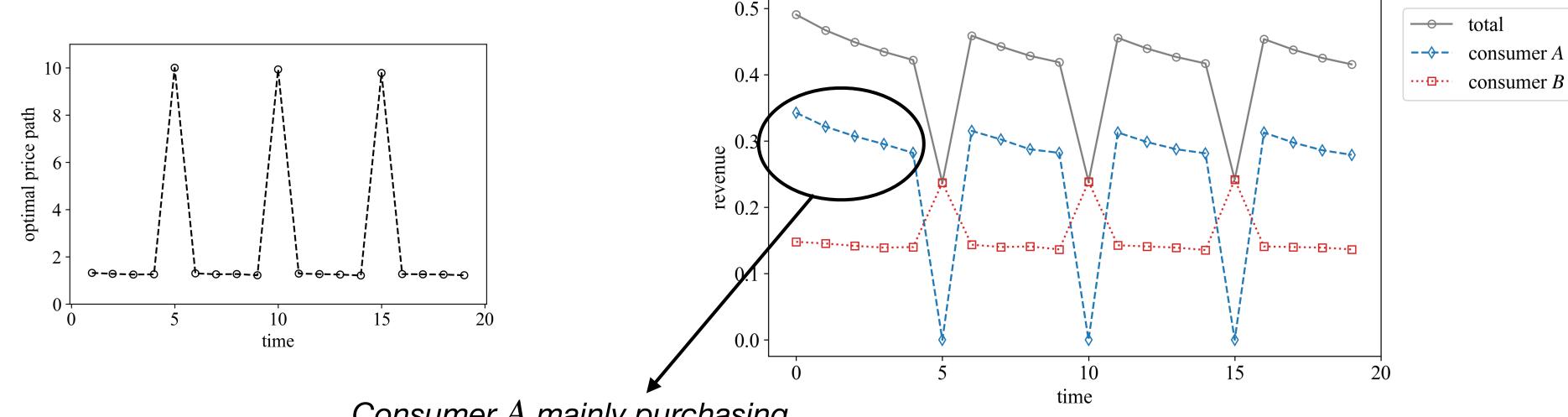




(d) Per period revenue

Constant optimal pricing + constant optimal pricing \neq constant optimal pricing

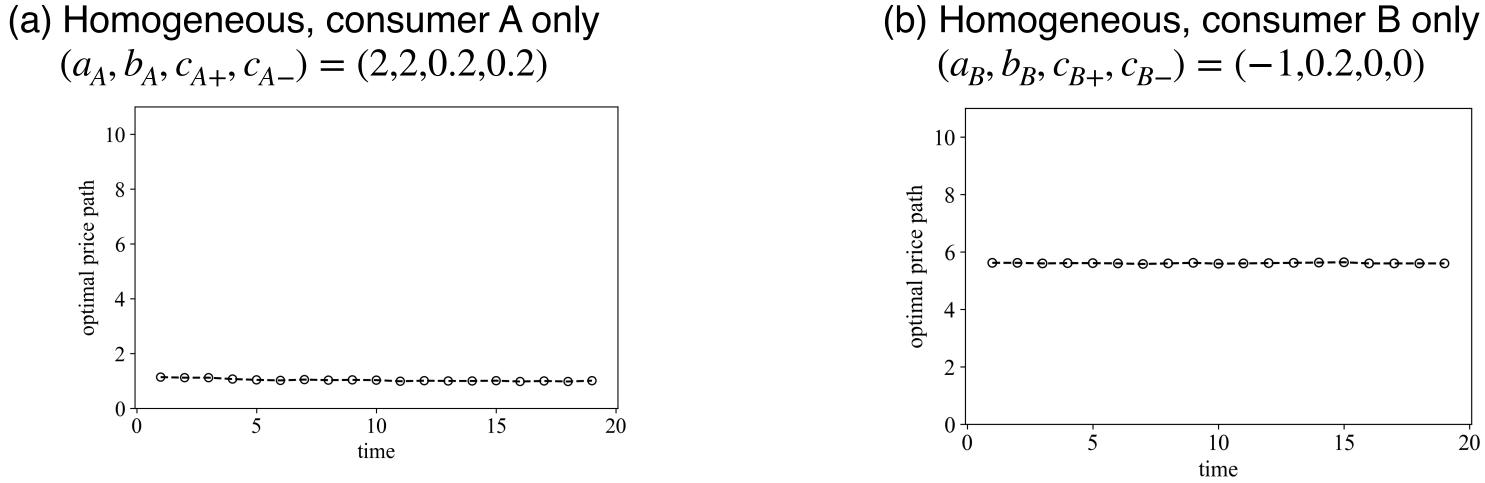


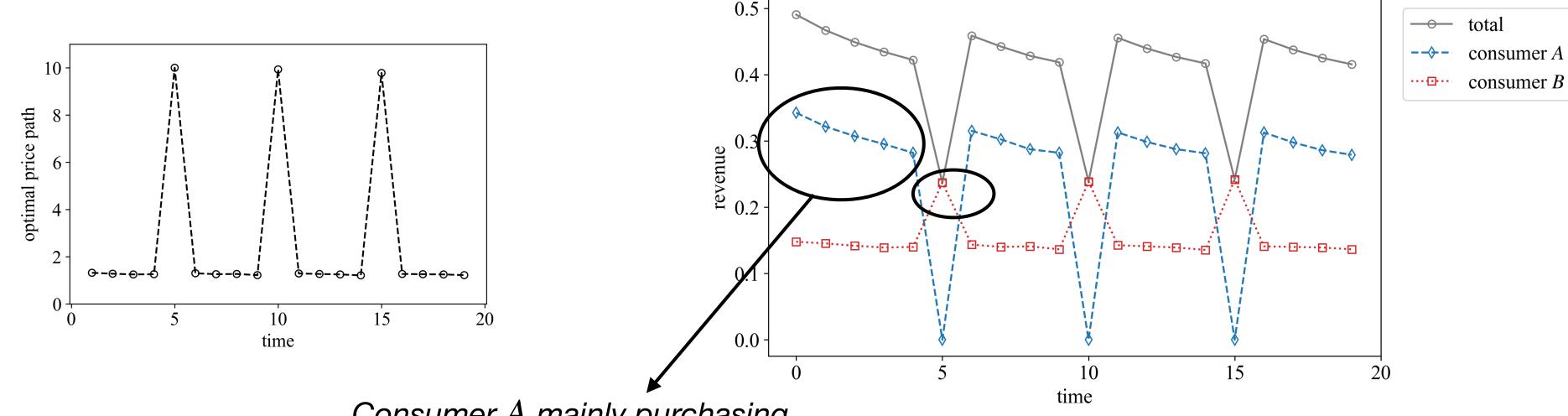


Consumer A mainly purchasing

(d) Per period revenue

Constant optimal pricing + constant optimal pricing \neq constant optimal pricing

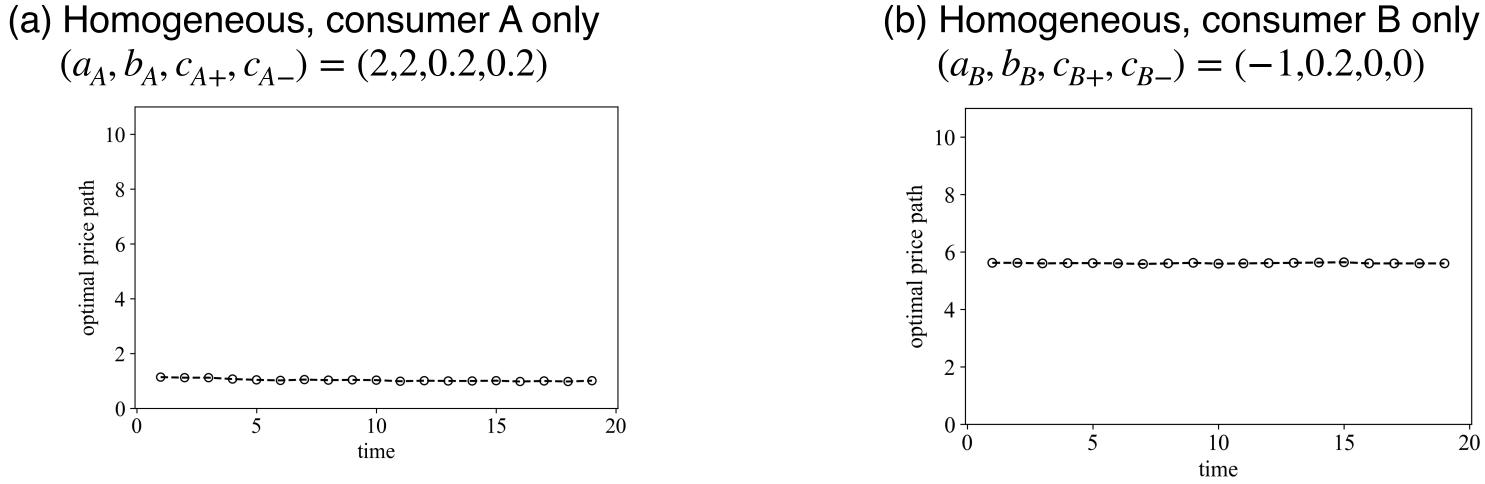


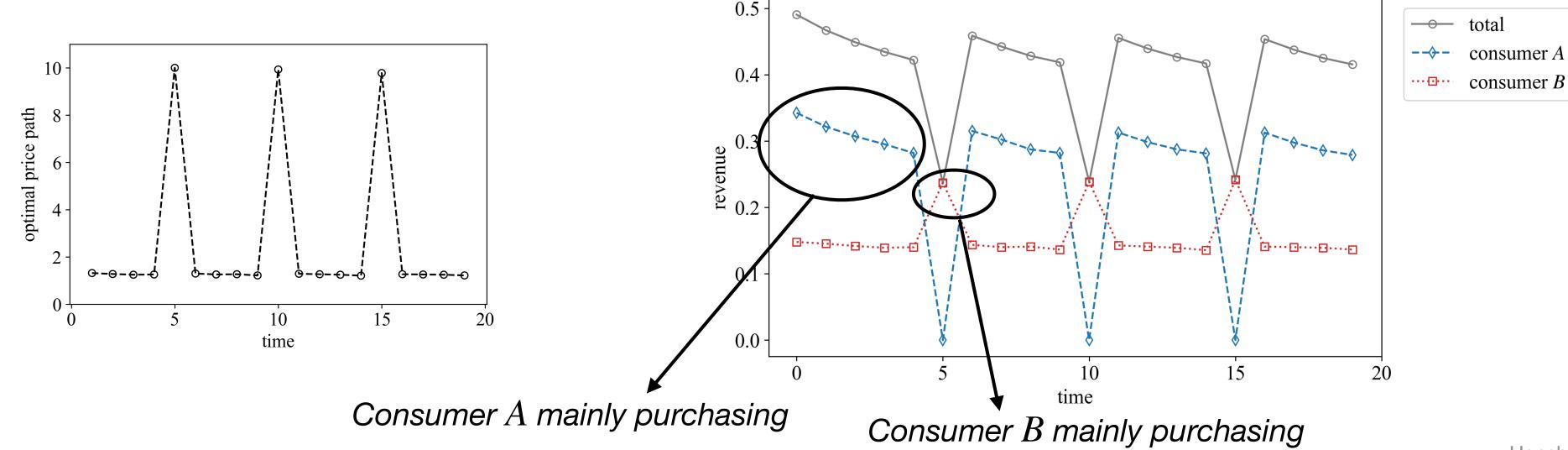


Consumer A mainly purchasing

(d) Per period revenue

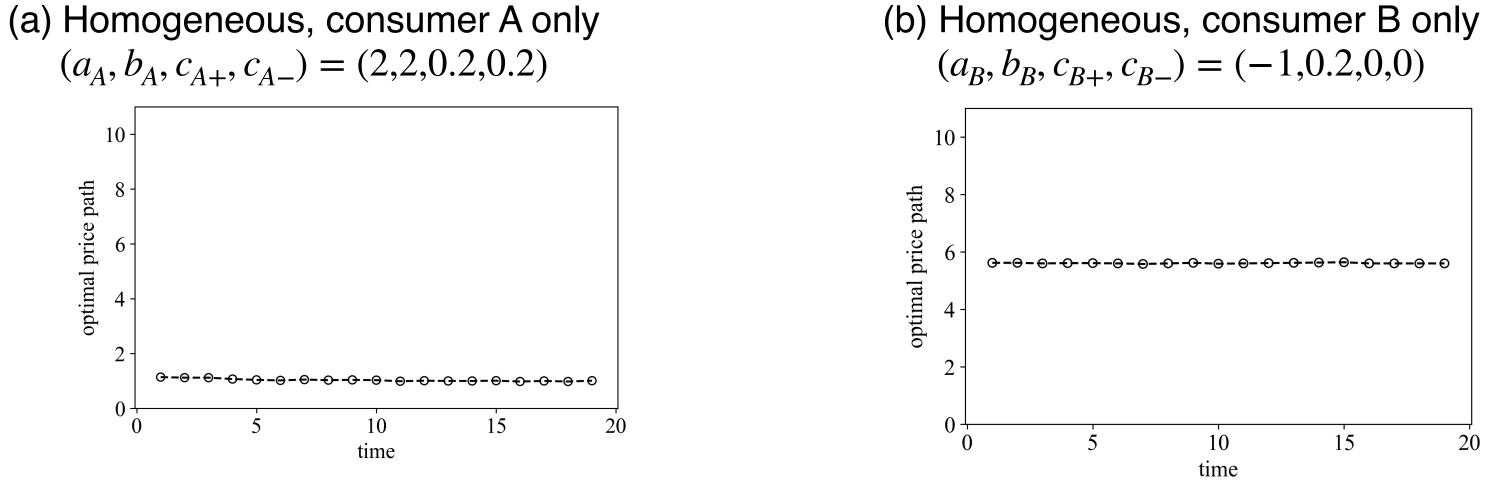
Constant optimal pricing + constant optimal pricing \neq constant optimal pricing

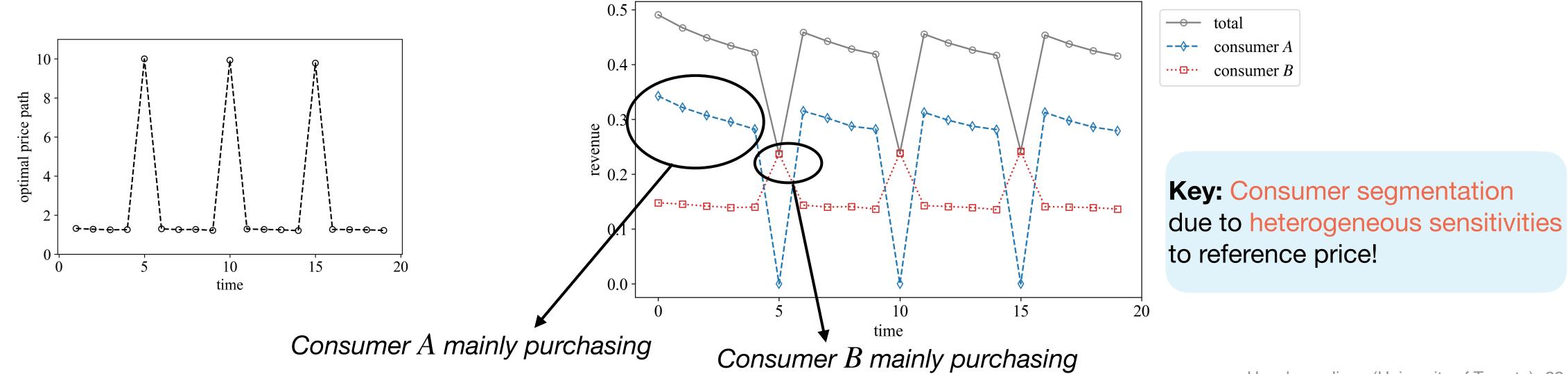




(d) Per period revenue

Constant optimal pricing + constant optimal pricing \neq constant optimal pricing





(d) Per period revenue

Contributions

Formulate the heterogeneous consumer reference effects model in the individual level

Propose a nonparametric statistical method for extracting consumer heterogeneity from transaction data

Provide computational algorithm for optimal pricing policies and establish the sub-optimality of constant policies

Apply to real-world data from retailing platform JD.com and show that the proposed approach leads to significant improvement in revenue

Process Transaction Data

Process Transaction Data

Estimate Heterogeneous Reference Effects

Process Transaction Data

Estimate Heterogeneous Reference Effects

Compute Optimal Price Policies

Estimate Heterogeneous Reference Effects

Compute Optimal Price Policies

Transaction data of 30k SKUs (Stock Keeping Unit) from 2.5M consumers

Estimate Heterogeneous **Reference Effects**

Hansheng Jiang (University of Toronto) 24

- Transaction data of 30k SKUs (Stock Keeping Unit) from 2.5M consumers
- Entries of **clicks** and **orders** from individual consumers

Estimate Heterogeneous **Reference Effects**

- Transaction data of 30k SKUs (Stock Keeping Unit) from 2.5M consumers
- Entries of **clicks** and **orders** from individual consumers

SKU ID	User ID	Request Time
924eba6741	06102f7920	March 1 23:23

Estimate Heterogeneous **Reference Effects**

- Transaction data of 30k SKUs (Stock Keeping Unit) from 2.5M consumers
- Entries of **clicks** and **orders** from individual consumers

SKU ID	User ID	Request Time
924eba6741	06102f7920	March 1 23:23

Estimate Heterogeneous **Reference Effects**

- Transaction data of 30k SKUs (Stock Keeping Unit) from 2.5M consumers
- Entries of **clicks** and **orders** from individual consumers

SKU ID	User ID	Request Time
924eba6741	06102f7920	March 1 23:23

Estimate Heterogeneous **Reference Effects**

- Transaction data of 30k SKUs (Stock Keeping Unit) from 2.5M consumers
- Entries of **clicks** and **orders** from individual consumers

SKU ID	User ID	Request Time
924eba6741	06102f7920	March 1 23:23

Estimate Heterogeneous **Reference Effects**

Compute Optimal Price Policies

SKU ID	User ID	Order Time	Selling Price	Original Pri
198cec62a	0abe9ef2c	March 1 17:14	79	89

Sample order data in JD.com dataset

Hansheng Jiang (University of Toronto) 24

- Transaction data of 30k SKUs (Stock Keeping Unit) from 2.5M consumers
- Entries of **clicks** and **orders** from individual consumers

SKU ID	User ID	Request Time
924eba6741	06102f7920	March 1 23:23

Estimate Heterogeneous **Reference Effects**

Compute Optimal Price Policies

SKU ID	User ID	Order Time	Selling Price	Original Pri
198cec62a	0abe9ef2c	March 1 17:14	79	89

Sample order data in JD.com dataset

Place your order

- Transaction data of 30k SKUs (Stock Keeping Unit) from 2.5M consumers
- Entries of **clicks** and **orders** from individual consumers

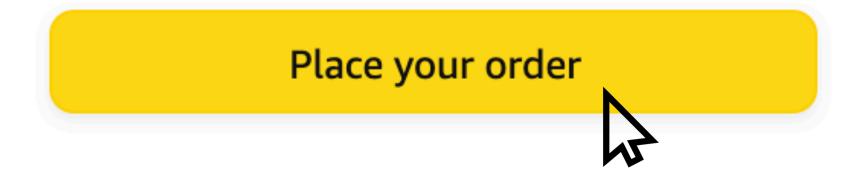
SKU ID	User ID	Request Time
924eba6741	06102f7920	March 1 23:23

Estimate Heterogeneous **Reference Effects**

Compute Optimal Price Policies

SKU ID	User ID	Order Time	Selling Price	Original Pri
198cec62a	0abe9ef2c	March 1 17:14	79	89

Sample order data in JD.com dataset

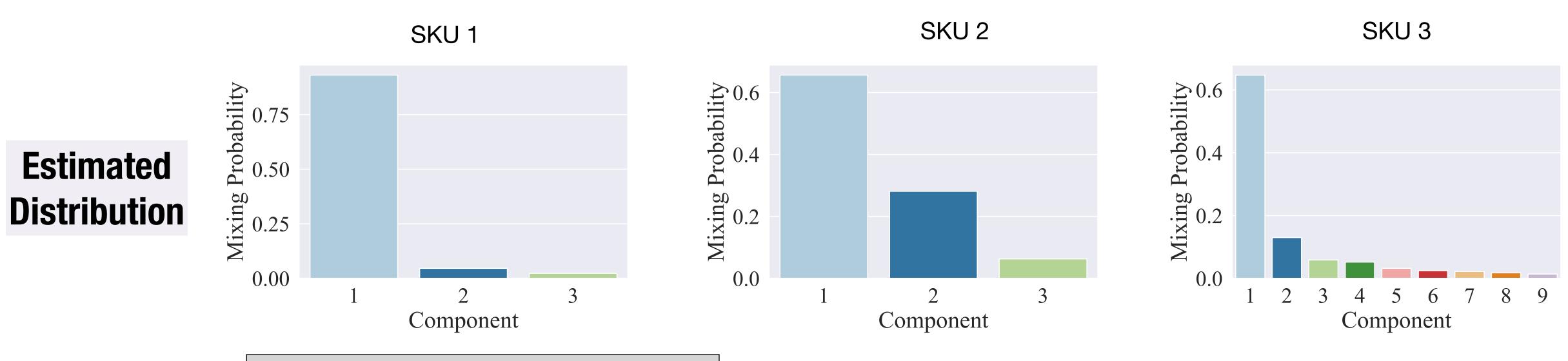


• Focus on most frequently purchased SKUs

Focus on most frequently purchased SKUs

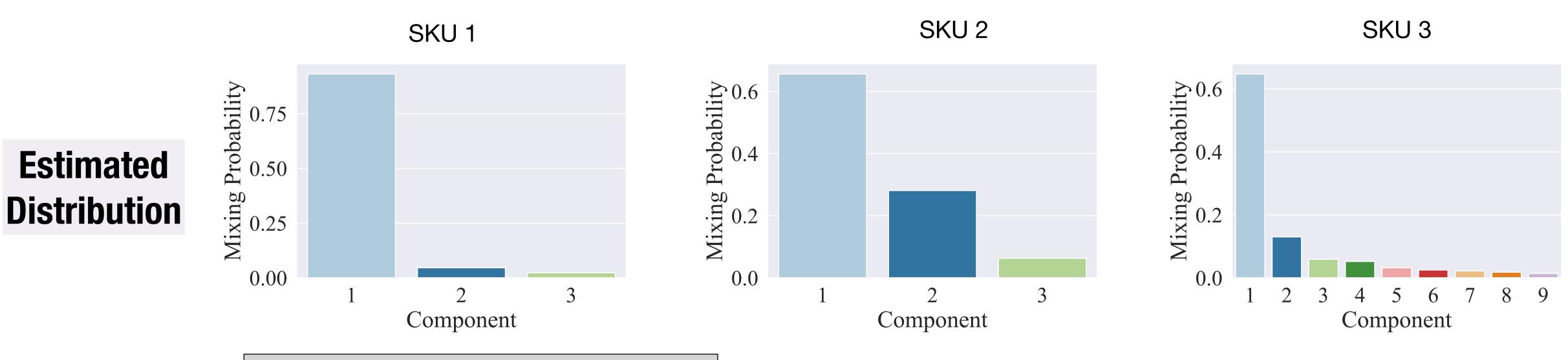
Estimated Distribution

Focus on most frequently purchased SKUs



^r Only components with mixing probability ≥ 0.01 are shown

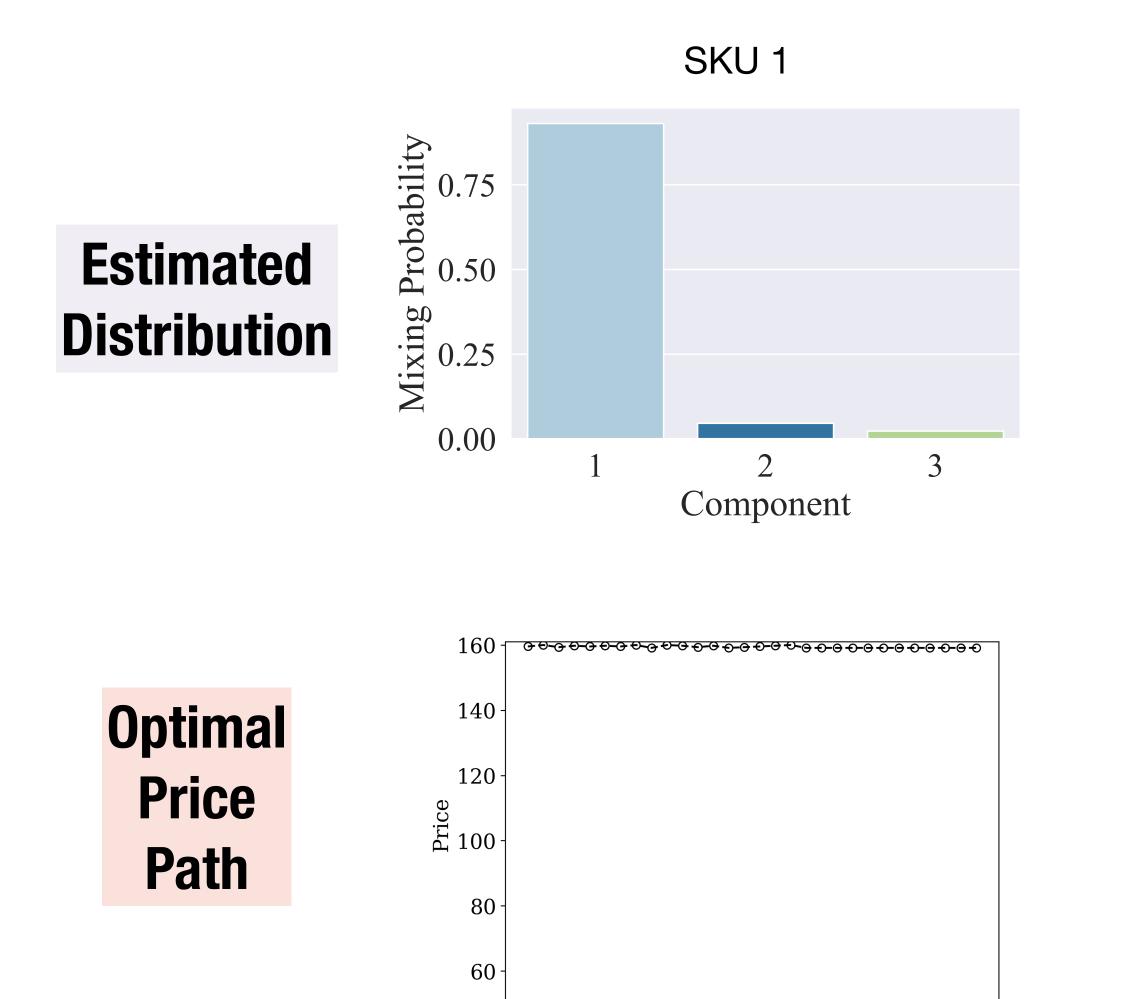
Focus on most frequently purchased SKUs



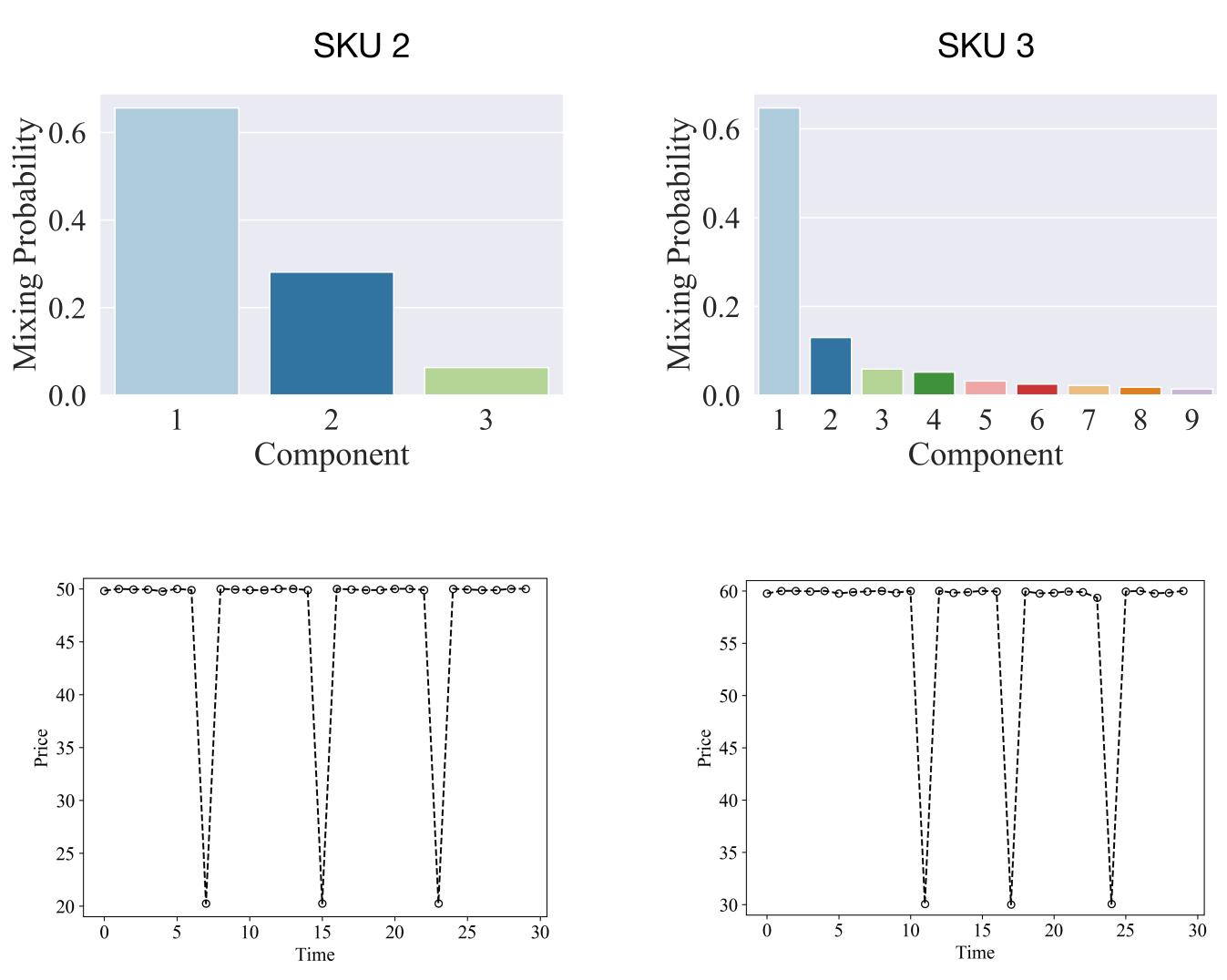
Only components with mixing probability ≥ 0.01 are shown

Optimal Price Path

Focus on most frequently purchased SKUs



Time



Hansheng Jiang (University of Toronto) 25

Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data

Numerical Comparisons

Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data

Demand Accuracy

Numerical Comparisons

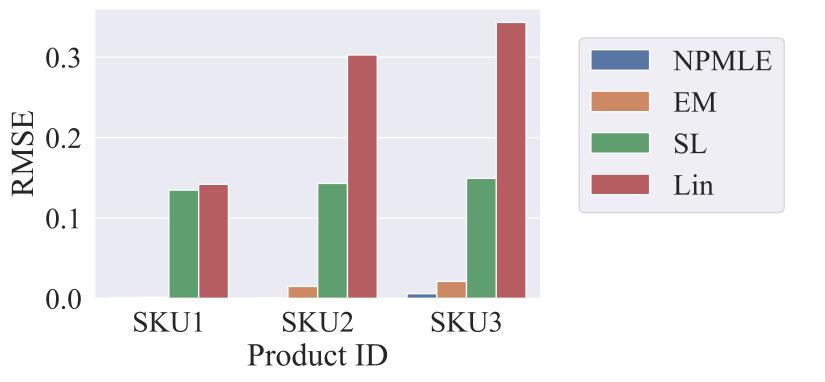
Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data

Demand Accuracy

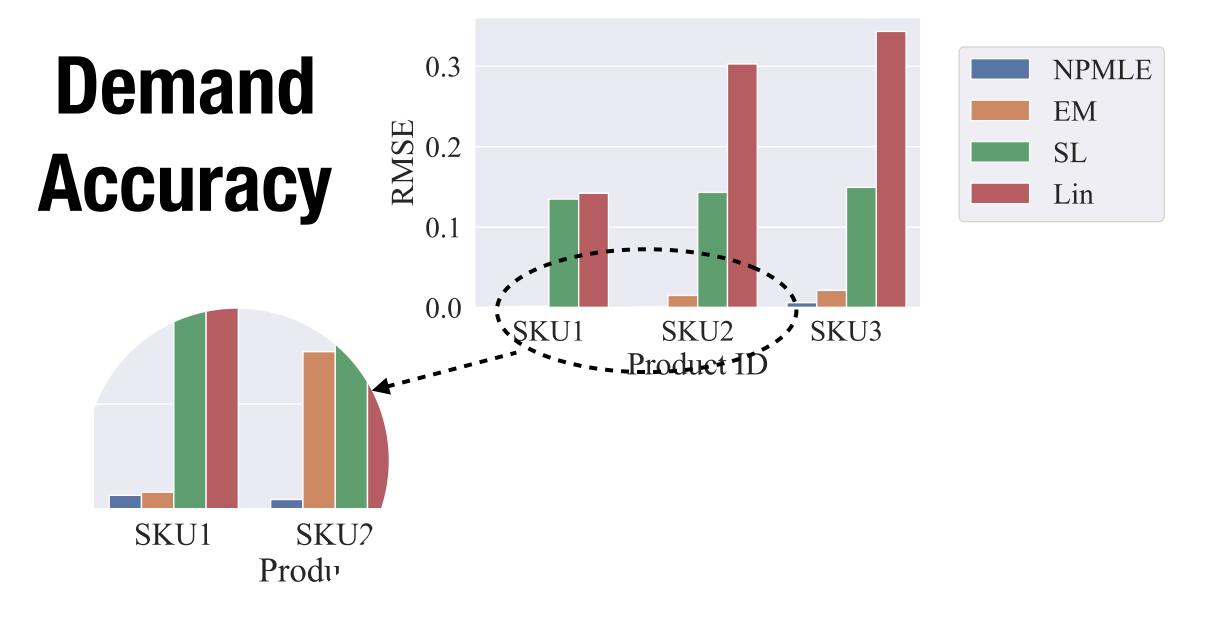


Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data

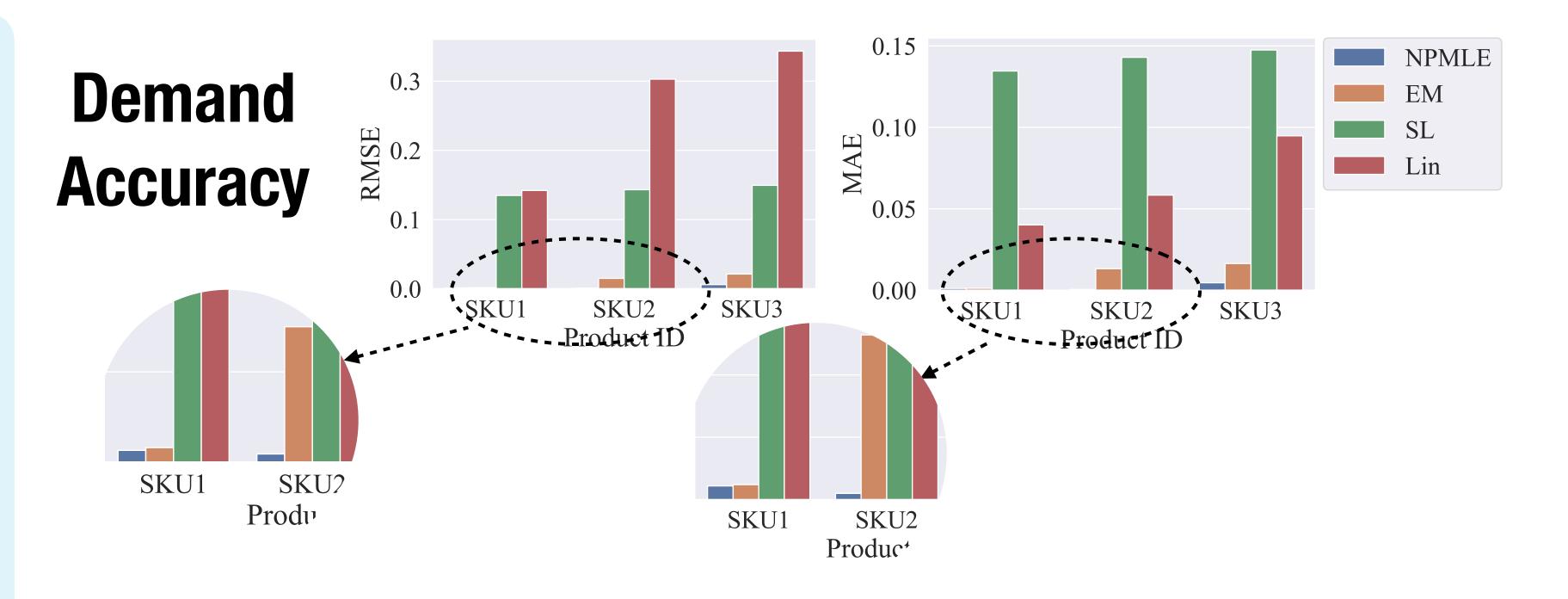


Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data



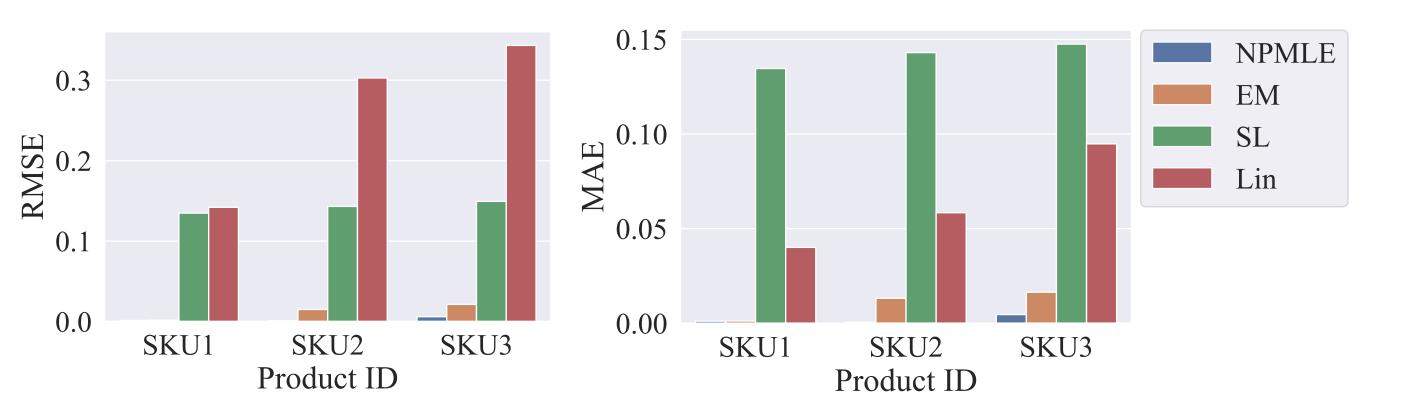
Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data

Demand Accuracy



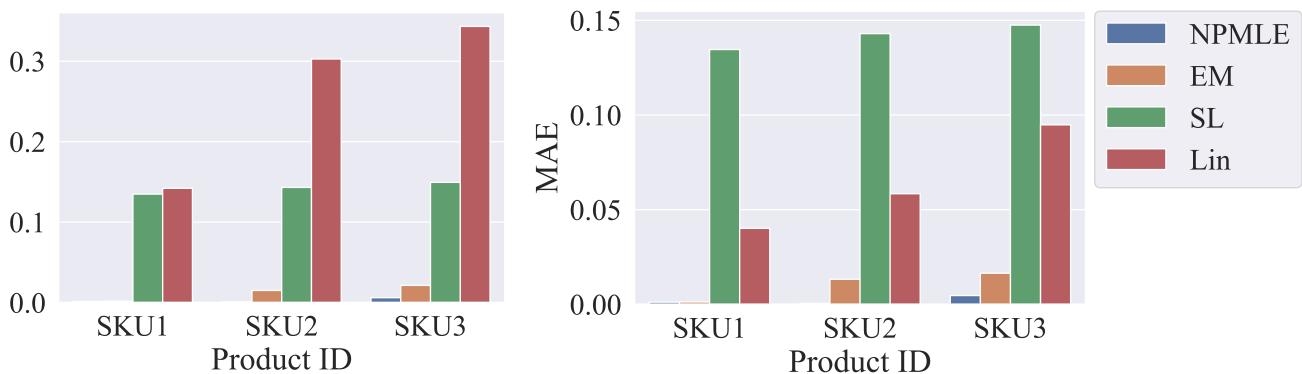
Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data

Demand Accuracy 0.1 0.0

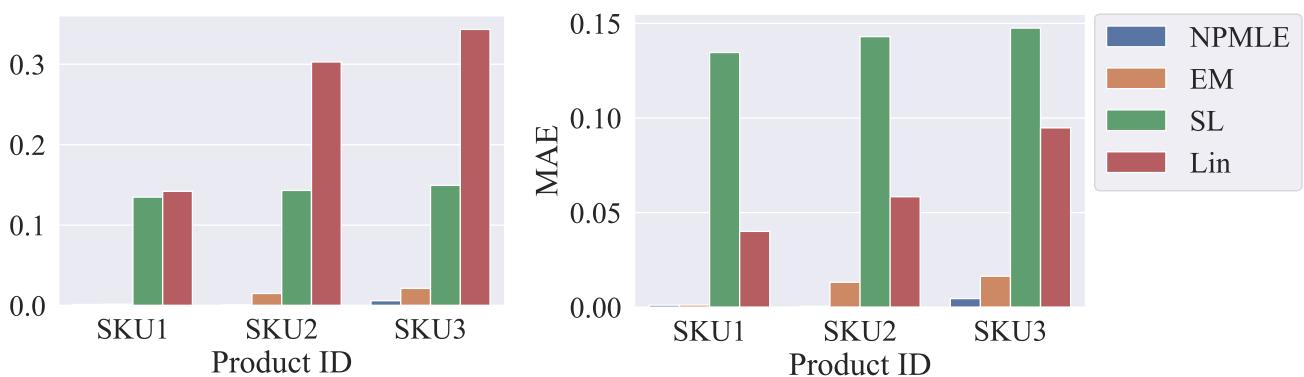


Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data

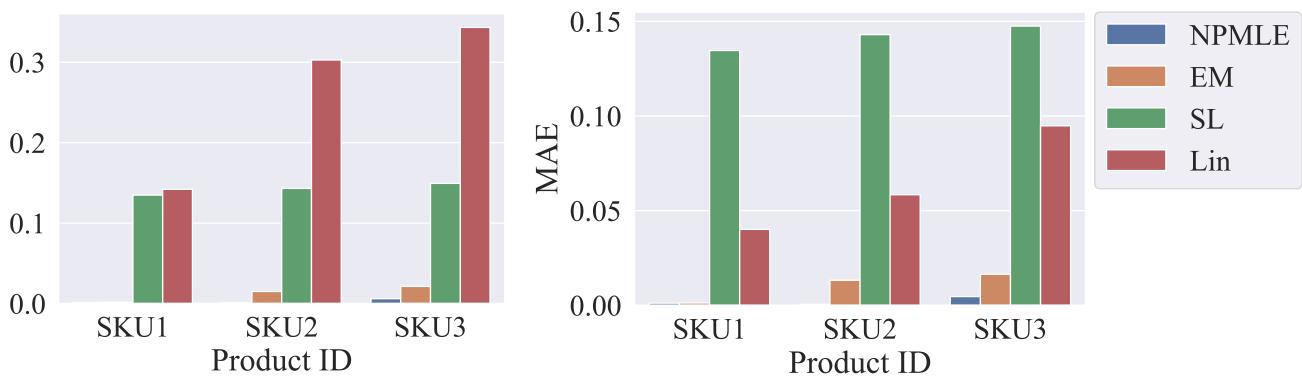


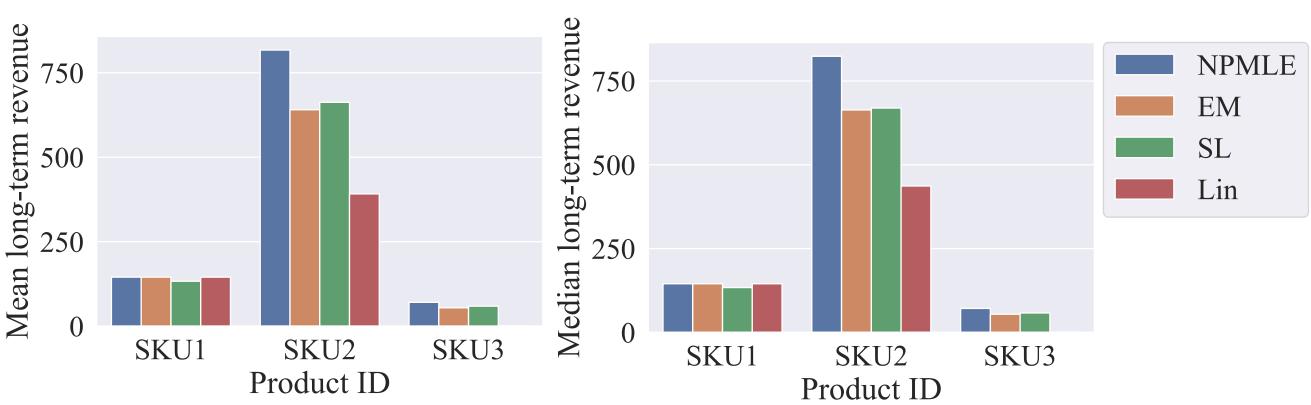
Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data



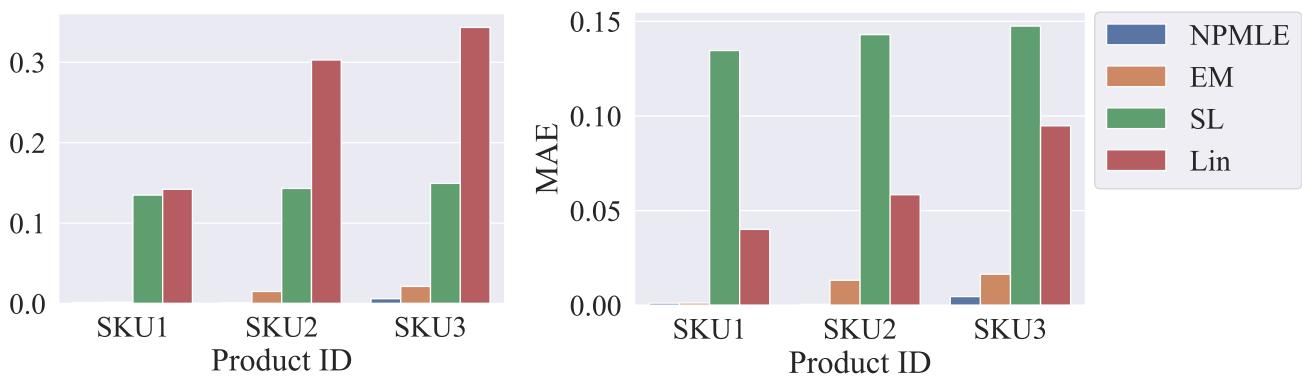


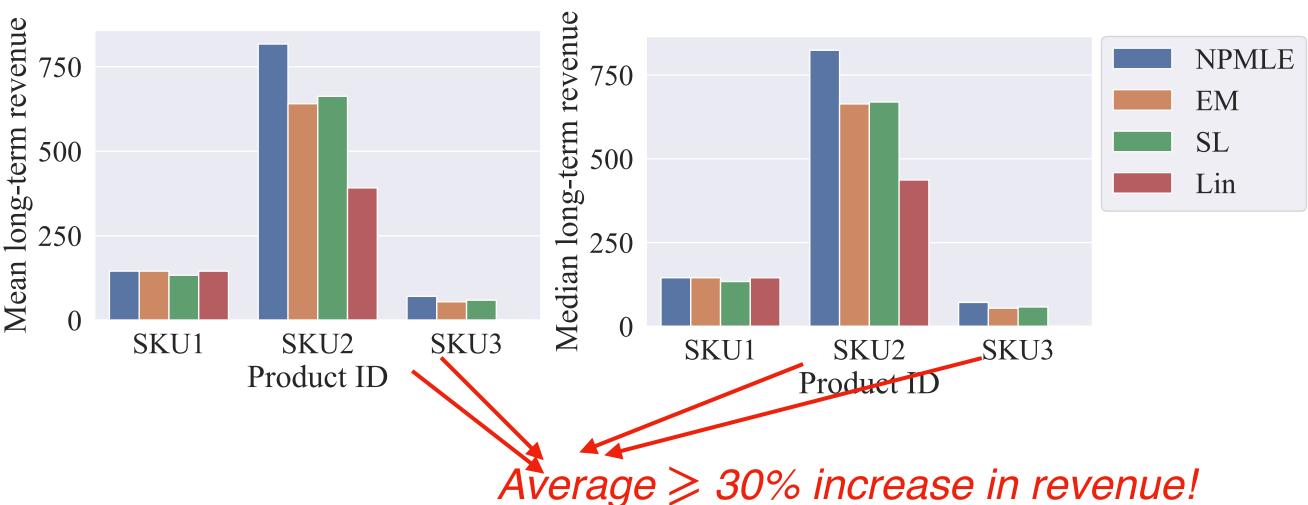
Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data



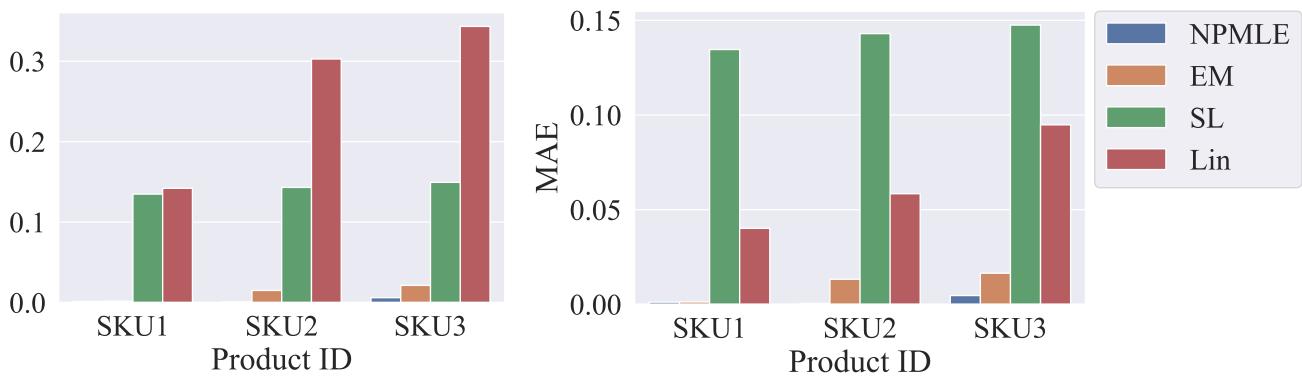


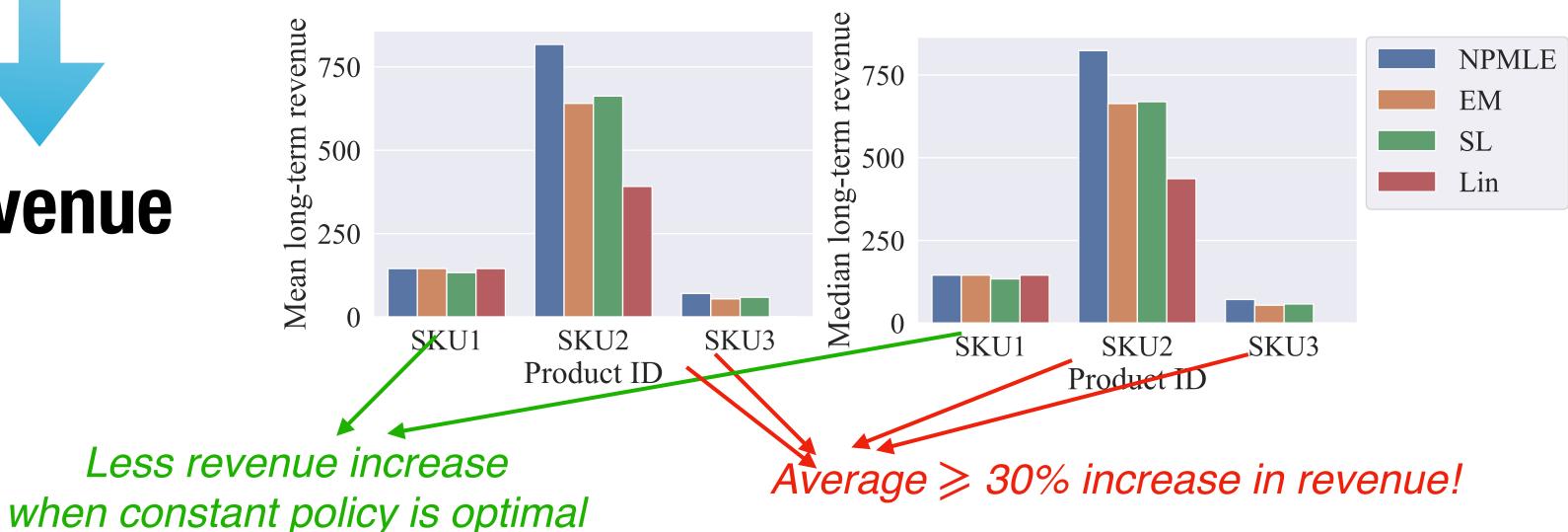
Methods NPMLE: Proposed approach

EM: Finite mixed logit model estimated by Expectation-Maximization

SL: Single logit model

Lin: Piecewise linear model for aggregate level data





Individual level transaction data provides rich information about consumer behaviors

- Nonparametric method is effective in learning consumer heterogeneity

Summary

Individual level transaction data provides rich information about consumer behaviors

- Individual level transaction data provides rich information about consumer behaviors
- Nonparametric method is effective in learning consumer heterogeneity
- Consumer heterogeneity offers a strong motive for price fluctuations

- Individual level transaction data provides rich information about consumer behaviors
- Nonparametric method is effective in learning consumer heterogeneity
- Consumer heterogeneity offers a strong motive for price fluctuations

- Individual level transaction data provides rich information about consumer behaviors
- Nonparametric method is effective in learning consumer heterogeneity
- Consumer heterogeneity offers a strong motive for price fluctuations

Future Directions of This Work

- Individual level transaction data provides rich information about consumer behaviors
- Nonparametric method is effective in learning consumer heterogeneity
- Consumer heterogeneity offers a strong motive for price fluctuations

Future Directions of This Work

Field experiments and practical impact

- Individual level transaction data provides rich information about consumer behaviors
- Nonparametric method is effective in learning consumer heterogeneity
- Consumer heterogeneity offers a strong motive for price fluctuations

Future Directions of This Work

- Field experiments and practical impact
- More general reference price model

- Individual level transaction data provides rich information about consumer behaviors
- Nonparametric method is effective in learning consumer heterogeneity
- Consumer heterogeneity offers a strong motive for price fluctuations

Future Directions of This Work

- Field experiments and practical impact
- More general reference price model
 - Horizontal reference effect in a multi-product setting

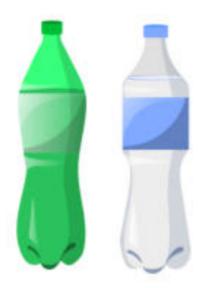
- Individual level transaction data provides rich information about consumer behaviors
- Nonparametric method is effective in learning consumer heterogeneity
- Consumer heterogeneity offers a strong motive for price fluctuations

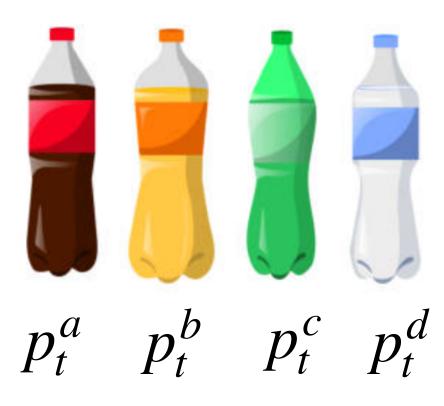
Future Directions of This Work

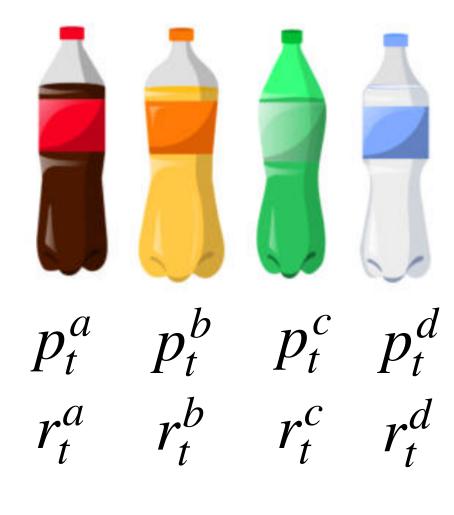
- Field experiments and practical impact
- More general reference price model
 - Horizontal reference effect in a multi-product setting 0
 - Stochastic updating scheme and estimation 0

Summary

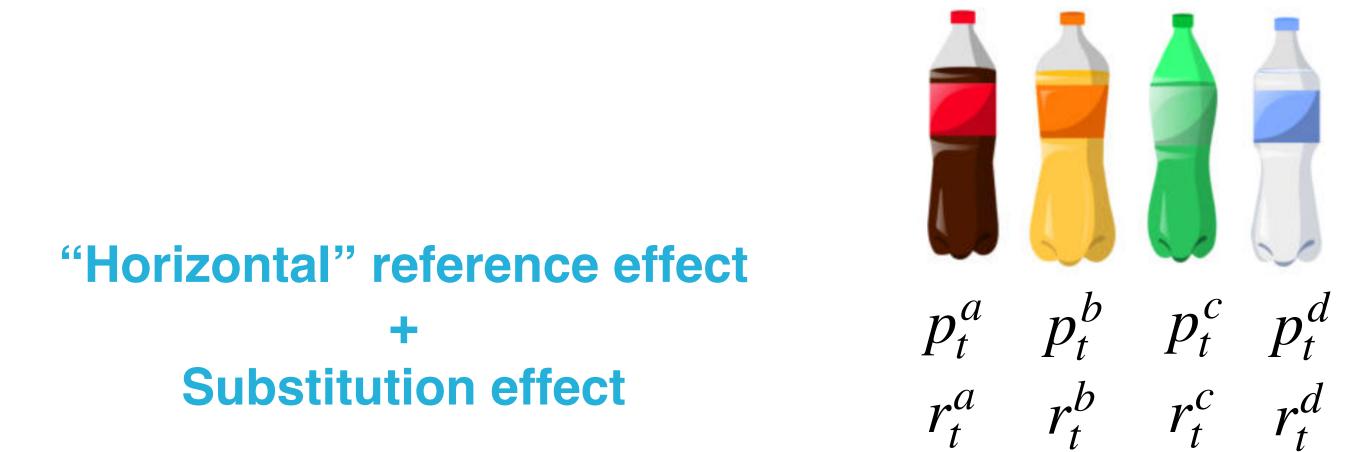
Hansheng Jiang (University of Toronto) 27







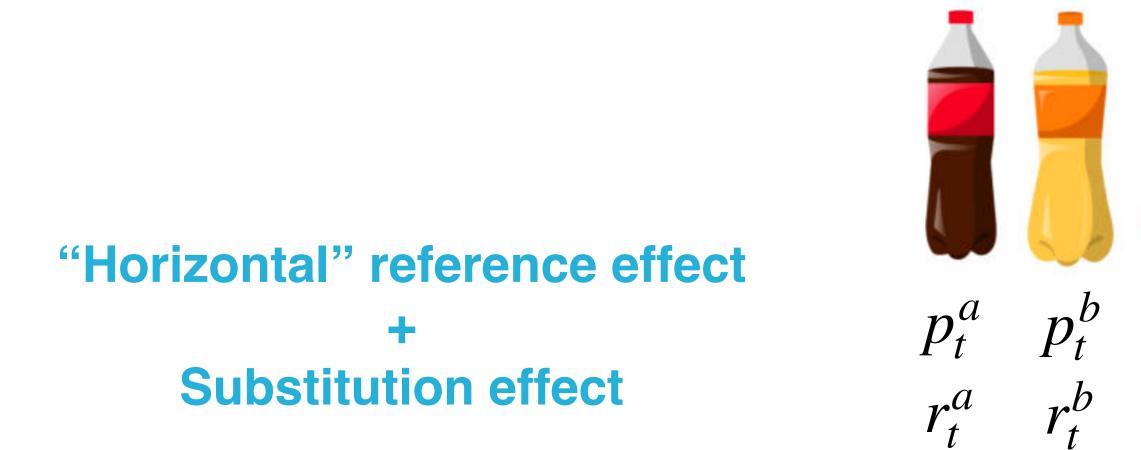
"Horizontal" reference effect $p_t^a \quad p_t^b \quad p_t^c \quad p_t^d \\ r_t^a \quad r_t^b \quad r_t^c \quad r_t^d$ + **Substitution effect**



Theorem (informal)

Suppose the reference effects of all products are gain-seeking, then the optimal pricing policy admits no steady state.

"Multi-Product Dynamic Pricing with Reference Effects Under Logit Demand". Under 2nd-round review at *Operations Research*. Amy Guo, H. Jiang, Z.-J. Max Shen.



Theorem (informal)

Suppose the reference effects of all products are gain-seeking, then the optimal pricing policy admits no steady state.

Theorem (informal)

The optimal steady state price, if exists, admits an explicit characterization depending on sensitivity parameters, memory parameter, and discount factor, and the steady state price can be computed efficiently.

"Multi-Product Dynamic Pricing with Reference Effects Under Logit Demand". Under 2nd-round review at *Operations Research*. Amy Guo, H. Jiang, Z.-J. Max Shen.

$$\begin{array}{c|c}
\bullet & \bullet & \bullet \\
\bullet & \bullet &$$

Thanks for your attention! Questions?

Supplementary slides

Explicit Characterization of Optimal Steady State

Theorem Consider loss-neutral case with N products. If the optimal pricing policy admits a steady state such that $\mathbf{p}^{\star}(\mathbf{p}^{\star\star}) = \mathbf{p}^{\star\star}$, then $\mathbf{p}^{\star\star}$ satisfies $p_i^{\star\star} = \Pi^{\star\star} + \frac{1}{b_i + c_i \kappa}, \quad \forall i \in N,$

where $\kappa := (1 - \beta)/(1 - \alpha\beta)$, and $\Pi^{\star\star}$ is the single-period revenue at the optimal steady state, which is the unique solution to the equation

$$\Pi = \sum_{i \in \mathbb{N}} \frac{1}{b_i + c_i \kappa} \cdot \exp\left(a_i - b_i \Pi - \frac{b_i}{b_i + c_i \kappa}\right).$$

Implications

- Optimal prices of different products differ based on b_i and c_i
- Efficient computation of optimal prices by binary search

Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is **not** optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).



Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is **not** optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

Implications: Constant pricing policy can be sub-optimal in the presence of lossaverse consumers!



Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is **not** optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

Implications: Constant pricing policy can be sub-optimal in the presence of lossaverse consumers!

Loss-averse consumers



Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is **not** optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

Implications: Constant pricing policy can be sub-optimal in the presence of lossaverse consumers!

Loss-averse consumers



Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is not optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

Implications: Constant pricing policy can be sub-optimal in the presence of lossaverse consumers!

Loss-averse consumers

More general sub-optimality results than existing works



Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is not optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

Implications: Constant pricing policy can be sub-optimal in the presence of lossaverse consumers!

Loss-averse consumers

• Removes simplified assumption that memory parameter $\alpha = 0$ [Z. Hu, J. Nasiry (2017)]



Theorem (Sub-optimality of constant pricing policy, informal) For sufficiently large c_{-} , the constant pricing policy is **not** optimal even if $c_{+} \leq c_{-}$ (loss-averse or neutral).

Implications: Constant pricing policy can be sub-optimal in the presence of lossaverse consumers!

Loss-averse consumers

More general sub-optimality results than existing works

- **Removes** simplified assumption that memory parameter $\alpha = 0$ [Z. Hu, J. Nasiry (2017)]
- segments [N. Chen, J. Nasiry (2020)]

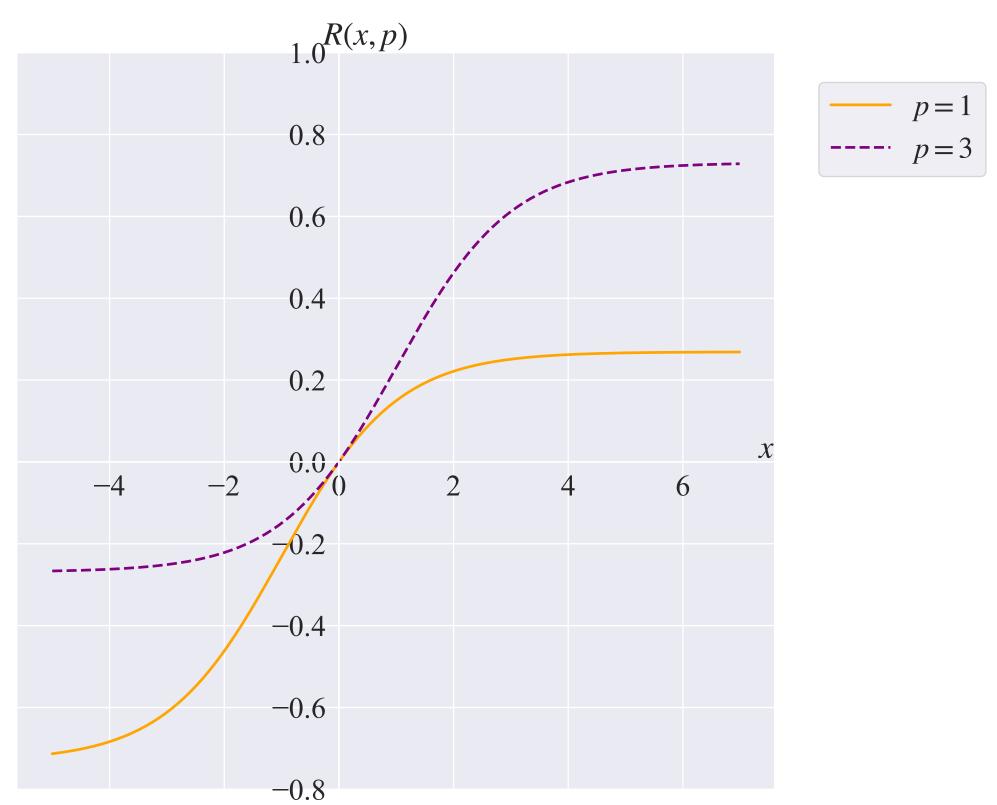
Constant optimal pricing policy

• Holds for individual level model with *arbitrary* number of segments rather than only two

Illustrations of Demand Model

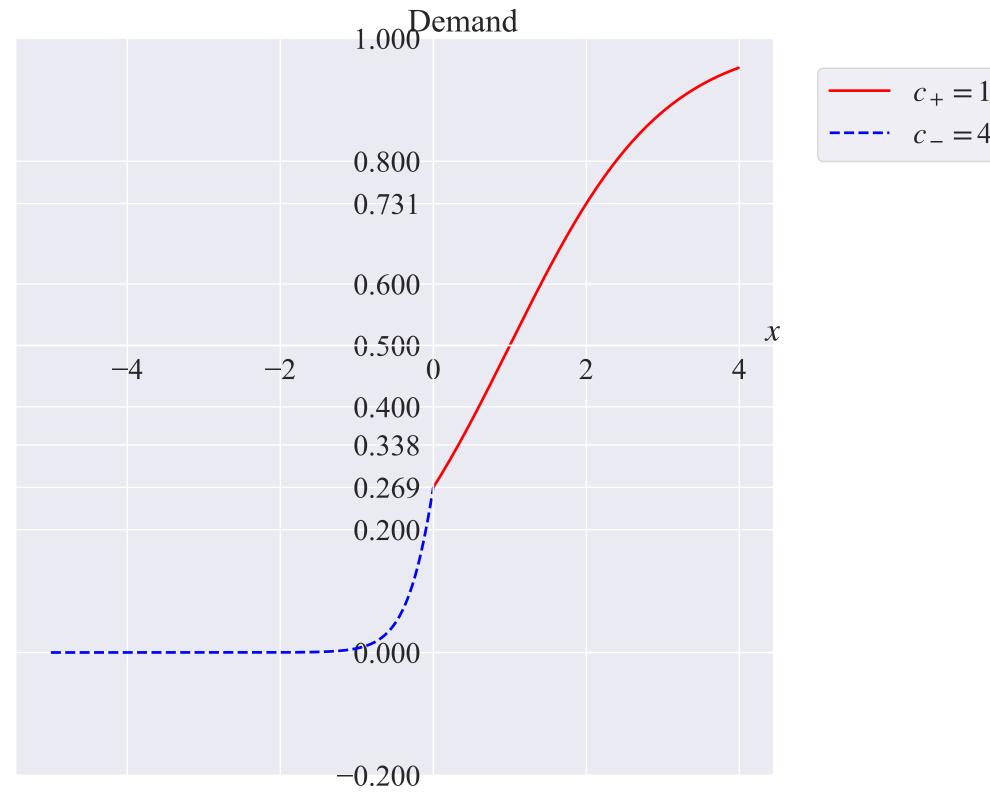
$$x = r - p$$

$$R(x, p) = \text{Demand}(x + p, p) - \text{Demand}(p, p)$$



"Decreasing Curvature" Property

Figure 1: Dependence of reference effects on price



"Dimensioning Sensitivity" Property

Figure 2: Examples of regional reference effects

• Prior work: Vertex Direction Method [BG Lindsay (1983)] requires ad-hoc discretization

- Our proposal: use modern convex optimization framework

Prior work: Vertex Direction Method [BG Lindsay (1983)] requires ad-hoc discretization

- Prior work: Vertex Direction Method [BG Lindsay (1983)] requires ad-hoc discretization
- Our proposal: use modern convex optimization framework
- Benefits: increased adaptivity and comprehensive analysis

- Prior work: Vertex Direction Method [BG Lindsay (1983)] requires ad-hoc discretization
- Our proposal: use modern convex optimization framework
- Benefits: increased adaptivity and comprehensive analysis

Computing NPMLE via Conditional Gradient Method

Repeat Find new consumer segment via solving subproblem $\mathbf{g}_k \cdot \nabla \mathscr{C}(\mathbf{f}_k)$ **Re-maximize objective over new segment** $\ell(\mathbf{f})$, where $\mathbf{f} \in \operatorname{conv}(\mathbf{g}_1, \dots, \mathbf{g}_{k-1})$ $k \leftarrow k + 1$ Until convergence

- Prior work: Vertex Direction Method [BG Lindsay (1983)] requires ad-hoc discretization
- Our proposal: use modern convex optimization framework
- Benefits: increased adaptivity and comprehensive analysis

Computing NPMLE via Conditional Gradient N

Repeat Find new consumer segment via solving $\mathbf{g}_k \cdot \nabla \mathscr{C}(\mathbf{f}_k)$ Re-maximize objective over new segmen $\mathscr{C}(\mathbf{f})$, where $\mathbf{f} \in \operatorname{conv}(\mathbf{g}_1, ..., k \leftarrow k + 1)$ Until convergence

Nethod	Key Points
subproblem	
\mathbf{g}_{k-1})	

- Prior work: Vertex Direction Method [BG Lindsay (1983)] requires ad-hoc discretization
- Our proposal: use modern convex optimization framework
- Benefits: increased adaptivity and comprehensive analysis

Computing NPMLE via Conditional Gradient Method

Repeat Find new consumer segment via solving subproblem $\mathbf{g}_k \cdot \nabla \mathscr{C}(\mathbf{f}_k)$ **Re-maximize objective over new segment** $\ell(\mathbf{f})$, where $\mathbf{f} \in \operatorname{conv}(\mathbf{g}_1, \dots, \mathbf{g}_{k-1})$ $k \leftarrow k + 1$ Until convergence

Key Points

 Conditional Gradient Method is provably convergent at rate $O(T^{-1})$ under subproblem oracles

- Prior work: Vertex Direction Method [BG Lindsay (1983)] requires ad-hoc discretization
- Our proposal: use modern convex optimization framework
- Benefits: increased adaptivity and comprehensive analysis

Computing NPMLE via Conditional Gradient Method

Repeat Find new consumer segment via solving subproblem $\mathbf{g}_k \cdot \nabla \mathscr{C}(\mathbf{f}_k)$ **Re-maximize objective over new segment** $\ell(\mathbf{f})$, where $\mathbf{f} \in \operatorname{conv}(\mathbf{g}_1, \dots, \mathbf{g}_{k-1})$ $k \leftarrow k + 1$ Until convergence

Key Points

- Conditional Gradient Method is provably convergent at rate $O(T^{-1})$ under subproblem oracles
- Convergence rate can be established even when subproblem is solved only approximately

- Prior work: Vertex Direction Method [BG Lindsay (1983)] requires ad-hoc discretization
- Our proposal: use modern convex optimization framework
- Benefits: increased adaptivity and comprehensive analysis

Computing NPMLE via Conditional Gradient Method

Repeat Find new consumer segment via solving subproblem $\mathbf{g}_k \cdot \nabla \mathscr{C}(\mathbf{f}_k)$ **Re-maximize objective over new segment** $\ell(\mathbf{f})$, where $\mathbf{f} \in \operatorname{conv}(\mathbf{g}_1, \dots, \mathbf{g}_{k-1})$ $k \leftarrow k + 1$ Until convergence

Key Points

- Conditional Gradient Method is provably convergent at rate $O(T^{-1})$ under subproblem oracles
- Convergence rate can be established even when subproblem is solved only approximately
- New consumer segment is adaptively added to distribution

• Likely sub-optimal but computationally efficient

Proposition For any initial reference price *r*,

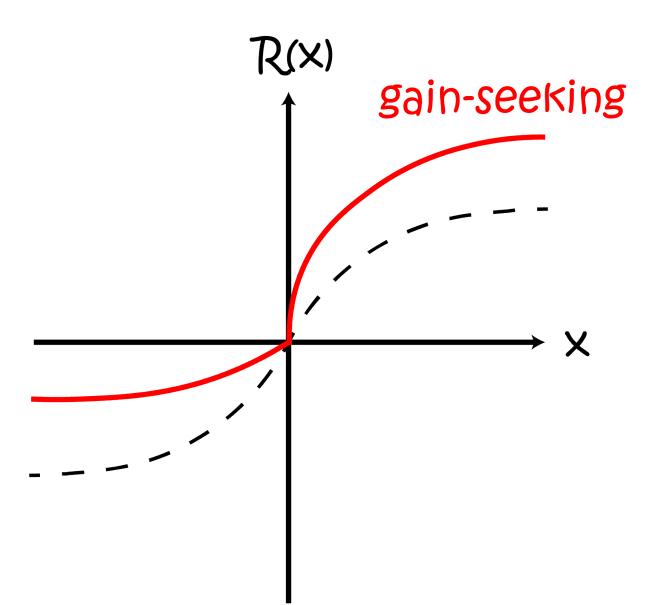
$$0 \le V^*(r) - V_{\rm m}(r) \le \frac{\beta(1-\alpha)}{(1-\alpha\beta)(1-\beta)} \eta(G) p_H$$

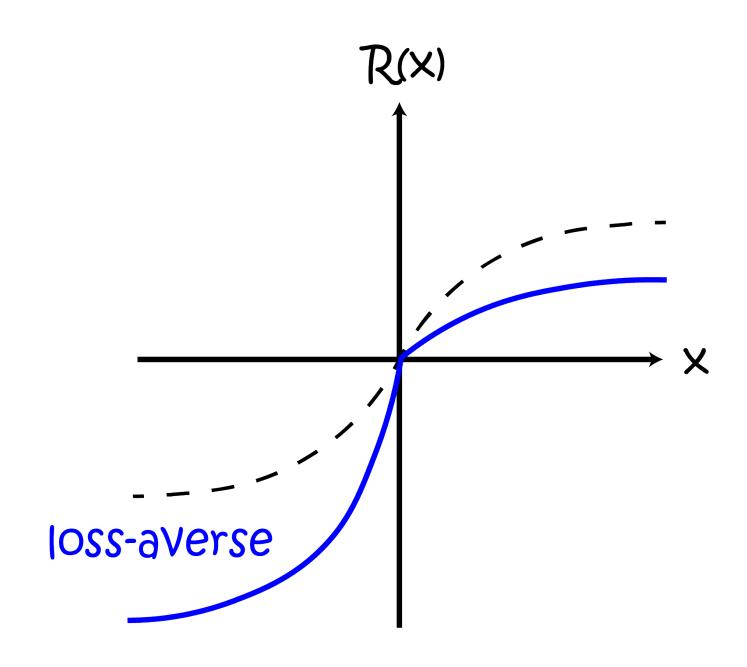
where $\eta(G) = \min\left(1, \sup_{(a,b,c_+,c_-)\in {\rm supp}(G)} \frac{\max(c_+,c_-)}{b+c_-}\right).$

- $p_{\rm m}(r_t) = \arg \max \Pi(r_t, p)$ $p \in \mathcal{P}$

Reference Effects

- Reference discrepancy x: reference price r current price p
- Reference effect R(p): incurred demand change
- Frequent consumers perceive gains if x > 0 and losses if x < 0
- Consumers respond differently under reference effects





Myopic pricing policy maximizes single-period revenue

Myopic Pricing Policy

Myopic pricing policy maximizes single-period revenue $p_{\rm m}(r) = \operatorname{argmax} p \mathbf{P}^G(r, p)$ $p \in \mathscr{P}$

- Myopic pricing policy maximizes single-period revenue $p_{\rm m}(r) = \operatorname{argmax} p \mathbf{P}^G(r, p)$ $p \in \mathscr{P}$
 - Sub-optimal in general but computationally efficient

Myopic pricing policy maximizes single-period revenue $p_{\rm m}(r) = \operatorname{argmax} p \mathbf{P}^G(r, p)$ $p \in \mathscr{P}$

• Sub-optimal in general but computationally efficient

Theorem (Performance guarantee, informal) **The difference of the optimal** long-term discounted revenue and the long-term discounted revenue is bounded by

$$0 \le V^{\star}(r) - V_{\mathrm{m}}(r) \le \frac{\beta(1-\alpha)}{(1-\alpha\beta)(1-\beta)} \eta(G)p_{H}.$$

Myopic pricing policy maximizes single-period revenue $p_{\rm m}(r) = \operatorname{argmax} p \mathbf{P}^G(r, p)$ $p \in \mathscr{P}$

• Sub-optimal in general but computationally efficient

Theorem (Performance guarantee, informal) **The difference of the optimal** long-term discounted revenue and the long-term discounted revenue is bounded by

$$0 \le V^{\star}(r) - V_{\mathrm{m}}(r) \le \frac{\beta(1-\alpha)}{(1-\alpha\beta)(1-\beta)} \eta(G)p_{H}.$$

When does the myopic pricing policy perform well?

Myopic pricing policy maximizes single-period revenue $p_{\rm m}(r) = \operatorname{argmax} p P^G(r, p)$ $p \in \mathscr{P}$

• Sub-optimal in general but computationally efficient

Theorem (Performance guarantee, informal) **The difference of the optimal** long-term discounted revenue and the long-term discounted revenue is bounded by

$$0 \le V^{\star}(r) - V_{\mathrm{m}}(r) \le \frac{\beta(1-\alpha)}{(1-\alpha\beta)(1-\beta)} \eta(G)p_{H}.$$

When does the myopic pricing policy perform well? • When memory parameter $\alpha \to 1$, reference prices are unchanged

Myopic pricing policy maximizes single-period revenue $p_{\rm m}(r) = \operatorname{argmax} p P^G(r, p)$ $p \in \mathscr{P}$

• Sub-optimal in general but computationally efficient

Theorem (Performance guarantee, informal) **The difference of the optimal** long-term discounted revenue and the long-term discounted revenue is bounded by

$$0 \le V^{\star}(r) - V_{\mathrm{m}}(r) \le \frac{\beta(1-\alpha)}{(1-\alpha\beta)(1-\beta)} \eta(G)p_{H}.$$

When does the myopic pricing policy perform well?

- When memory parameter $\alpha \to 1$, reference prices are unchanged
- When discount factor $\beta \to 0$, less weights are allocated to future revenue

